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Abstract

The purpose of this work is the computation of the noise in a nanoscale nMOSFET
whose charged carrier transport is described by the Boltzmann equation and where
the confinement of carriers is determined by the Schrödinger equation.

The modeling of carrier transport in semiconductor devices has a long tradition
of simulation by the Boltzmann equation or its moments but only in more recent
years have deterministic solvers become feasible. In particular, solvers based on an
expansion of the angular dependence of k-space into spherical or Fourier harmonics
have proven to be fruitful. Furthermore, it has been shown exhaustively that nanoscale
transistors exhibit confining properties on the carriers that necessitate the solution of
the Schrödinger equation for accurate characterization.

We build upon prior research concerning such models in order to formulate the first
ever Newton-Raphson method including the Poisson, Schrödinger, and Boltzmann
equations for a quadratically converging system describing a nanoscale nMOSFET.
We proceed to formulate the problem for the self-consistent small signal response of
the aforementioned fully coupled system. It is here that we encounter several un-
foreseen difficulties which are of both conceptual and numerical nature and whose
investigation and proper resolution is original to this work.

The calculation of noise via the Langevin-source approach – the main purpose of
this work – strongly relies on a correct understanding of how the system responds
to small signal perturbations and many of our original results are necessary to for-
mulate the problem numerically. Although the Langevin-source approach has been
applied to the Boltzmann equation before, we are the first to demonstrate a fully
self-consistent solution including the Schrödinger equation. Moreover, we investigate
the correct treatment of degeneracy in the context of the Langevin-source approach
and derive general equations to show where multiplicities need to appear. We show
several optimizations to reduce the computation time, one of which is that we demons-
trate that for certain symmetries in the degeneracy, the problem for the admittance
parameters and for the noise is completely equivalent and can be solved in one step.

To put our approach to the test, we characterize the stationary, the small signal,
and the noise properties of a nanoscale nMOSFET. We show that our full Newton-
Raphson approach converges quadratically and therefore supremely faster than the
usual Gummel type iteration scheme. We establish the numerical limits of the ap-
proach and validate that it fulfills essential conservation laws like current conversation,
reciprocity in equilibrium, and the Nyquist theorem. Wherever possible we compare
to existing results in literature which corroborate our findings.

The main advantage of a Boltzmann equation based solver for noise is that the
noise is completely determined by the scattering processes. If the included scattering
rate contains all essential processes that contribute to stationary solutions and to
the small signal response of the system, the noise is necessarily correct. However,
this argument can only hold as long as the impact of fluctuations in the distribution
function on the electric potential – and vice versa – is included. Our approach contains
this interdependency by solving the system of equations self-consistently which is only
possible due to the deterministic formulation of the Boltzmann equation. We verify
that self-consistency is indeed vital in the ballistic transport regime and show with
unprecedented insight into the origins of noise in nanoscale devices how fluctuations
elicit responses in the terminal currents.

This work presents the first ever fully self-consistent solver for the stationary, small
signal, and noise characterization of a nanoscale nMOSFET with a confined electron
gas.



Zusammenfassung

Ziel dieser Arbeit ist die Berechnung des Rauschens in einem nanometergroßen nMOS-
FET, dessen Ladungsträgertransport durch die Boltzmanngleichung beschrieben ist
und bei dem das Confinement der Ladungsträger durch die Schrödingergleichung be-
stimmt ist.

Die Modellierung des Ladungsträgertransports in Halbleiterbauelementen mit Hil-
fe der Boltzmanngleichung oder ihrer Momente hat bereits eine längere Tradition, es
ist allerdings erst seit Kurzem möglich, diese mit deterministischen Methoden sinn-
voll zu lösen. Insbesondere Lösungsmethoden, die auf einer Entwicklung der Win-
kelabhängigkeit des ~k-Raums in Kugelflächenfunktionen oder Fourierharmonischen
beruhen, zeigen sich als wirkungsvoll. Außerdem wurde schon häufig gezeigt, dass
Ladungsträger in nanometergroßen Transistoren Quanteneffekten ausgesetzt sind, die
zur Beschreibung die Lösung der Schrödingergleichung benötigen.

Wir bauen auf vorhergegangene Arbeiten mit ähnlichen Ansätzen auf und for-
mulieren somit die zuvor nie dagewesene vollständige Newtonmethode für das Sys-
tem von Poisson-, Schrödinger- und Boltzmanngleichung für einen nanometergroßen
nMOSFET. Daraufhin formulieren wir ebenfalls das selbstkonsistente Gleichungssys-
tem zur Bestimmung des Kleinsignalverhaltens. Hierbei treten mehrere unvorherseh-
bare Schwierigkeiten auf, deren Ursprung sowohl konzeptionell als auch numerisch ist
und deren Behebung einen wesentlichen Teil dieser Arbeit ausmacht.

Das Hauptthema ist die Berechnung des Rauschens durch einen Langevinquellen-
ansatz, das stark auf dem richtigen Verständnis des Verhaltens des Gleichungssys-
tems unter Kleinsignalstörungen beruht. Viele unserer Erkenntnisse über die Berech-
nung des Kleinsignalverhaltens sind erforderlich, um den Langevinquellenansatz nu-
merisch korrekt umzusetzen. Obwohl der Langevinquellenansatz bereits zuvor auf die
Boltzmanngleichung angewandt wurde, ist es erstmals in dieser Arbeit gelungen eine
vollständig selbstkonsistente Lösung, inklusive der Schrödingergleichung, zu demons-
trieren. Weiterhin untersuchen wir auch die Entartung von Zuständen im Rahmen
des Langevinquellenansatzes und leiten allgemeine Gleichungen her, die zeigen, wie
sich Multiplizitäten von entarteten Zuständen auswirken. Ferner zeigen wir mehrere
Möglichkeiten zur Optimierung der Berechnungslaufzeit. Bei einer davon zeigen wir et-
wa, dass unter bestimmten Symmetriebedingungen für die Entartung von Zuständen,
die Rausch- und Kleinsignalverhalten mathematisch äquivalent werden und somit in
bloß einem Lösungsschritt bestimmt werden können.

Um unsere Methode zu testen, charakterisieren wir das stationäre, das Kleinsignal-
und das Rauschverhalten eines nanometergroßen nMOSFETs. Wir zeigen, dass die
Newtonmethode mit ihrer quadratischen Konvergenz dem üblichen iterativen Gum-
melverfahren deutlich überlegen ist. Wir ergründen die numerischen Grenzen und veri-
fizieren Erhaltungsgesetze wie die Stromerhaltung, die Reziprozität im Gleichgewicht
und das Nyquisttheorem. Wo auch immer möglich, vergleichen wir mit existierenden
Resultaten aus der Literatur, die unsere Ergebnisse bekräftigen.

Ein wesentlicher Vorteil unserer Methode ist, dass das Rauschen vollständig durch
die Streuprozesse in der Boltzmanngleichung definiert ist. Es folgt daher, dass das
Rauschen notwendigerweise richtig sein muss, wenn die Streurate alle essentiellen
Streuprozesse enthält. Dies trifft allerdings nur dann zu, wenn der Einfluss von Fluk-
tuationen in der Ladungsträgerverteilungsfunktion auf das elektrische Potential – und
umgekehrt – beinhaltet ist. Unsere Methode beinhaltet diese wechselseitige Kopp-
lung durch die selbstkonsistente Lösung, die nur mit einem deterministischem Ansatz
möglich ist. Wir zeigen mit nie zuvor dagewesener Einsicht, dass diese Selbstkonsistenz
eine wesentliche Rolle für ballistischen Transport spielt und wie diese zum Rauschen
im Kontaktstrom führt.

Diese Arbeit stellt den ersten selbstkonsistenten Löser für sowohl das stationäre
Verhalten als auch das Kleinsignal- und Rauschverhalten eines nanometergroßen nMOS-
FET mit Elektronenconfinement dar.
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Chapter 1

Introduction

Since their inception in the 1940s, transistors have become essential to virtually
all electronics. Their ubiquitous use in applications from logic gates to amplifiers
is a testament to their indispensability to modern society. Massive orchestrated
efforts spanning the whole semiconductor industry have been directed into the
manufacturing of ever smaller and thus more efficient and faster transistors [1].
These efforts culminate in today’s nanoscale MOSFETs used in digital and ana-
log applications to enable the massive adoption of small, energy efficient, and
inexpensive portable computers with high-bandwidth wireless communication.

For analog applications, the ongoing miniaturization has led to integrated
circuits for RF applications in the GHz range. Due to the large-scale integration
of CMOS transistors, they offer cost-efficient manufacturing which make them
particularly suited for handling the increased demands for analog circuits [2].
Simulations significantly support the development of chips from the computer-
aided design of the circuits all the way to the virtual reproduction of the man-
ufacturing process. Somewhere in the design process also lies the simulation of
individual MOSFETs with which we will occupy ourselves. As the size of these
MOSFETs decreases, it becomes apparent that previously reliable models fail
to accurately predict their behavior [3].

Many of the more detailed simulation approaches focus on the stationary op-
eration of MOSFETs, yet modeling of analog circuits requires additional knowl-
edge about the small signal response and the noise characteristics of devices.
In this work, we will take an existing approach to the simulation of nanoscale
MOSFETs and extend it to incorporate accurate predictions about small signal
and noise characteristics. But before we elaborate on the ideas behind this, we
need to understand where this work is placed in the broader context of device
simulations.

7



8 CHAPTER 1. INTRODUCTION

1.1 State of Device Simulation

There are multiple approaches to the simulation of semiconductor devices, each
with its own domain of applications. Since most electronic design happens at
the circuit level, compact models for transistors are widely used to approximate
the transistor’s behavior as a circuit component [4, 5]. They consist of physics-
based or fitted analytic functions, or even interpolated table lookup models.
While quick to evaluate, the physics involved, if any, is a crude approximation
to reality and thus they are only useful to capture the most important aspects
of the transistor’s operation. Free parameters of compact models are usually
informed by experiments or more detailed device simulations.

On the device level, models derived as moments of the Boltzmann equation
(BE) [6, 7, 8] have a history of successful simulation of transistors. The simplest
one, using only the first two moments, is the drift-diffusion (DD) model [9, 10]
which to this date is the most widely used and the de facto standard in the
semiconductor industry. Its popularity is due to its simplicity yet surprising
effectiveness [11].

To increase the accuracy of the DD model, it is possible to extend it with the
next two moments of the BE which is called the hydrodynamic model (HD) [12].
The HD model includes carrier heating in the channel and is therefore capable
of modeling velocity overshoot in the channel region. The predictive capabili-
ties of the moments-based models are naturally linked to how well the inherent
assumptions in their derivation hold. In MOSFETs, we find that devices with
channel lengths of less than 100 nm cannot be reasonably simulated with these
models anymore [3, 13, 14]. Nevertheless, there are applications in which the DD
model is used as a fitting model for short-channel devices where most free pa-
rameters are adjusted in ways that are incompatible with their original physical
meaning. This type of application would not require any predictive capabilities.
Including even more moments than in the HD model is usually inadvisable [15]
and it is generally a good idea to solve the BE directly when the HD model does
not suffice anymore.

Solving the BE is significantly more challenging than any of the DD or HD
models and usually involves a factor of around a thousand times more compu-
tational effort. The most popular way to solve the BE is to use a Monte Carlo
(MC) based approach [16] due to its relatively straightforward implementation
and its frugality in memory utilization. Here, an ensemble of carriers is tracked
throughout the device and their respective scattering rates are stochastically ap-
plied at set time intervals. In more recent years, deterministic solvers for the BE
gained some traction [17, 18, 19, 20, 21]. Deterministic solvers generally yield
numerically higher quality results and they are able to solve systems which are
computationally infeasible to solve with MC methods [22]. These are typically
cases in which the MC based methods cannot collect statistically significant
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amounts of data on a process, e.g. when considering scattering processes with
two very different time scales or when resolving small currents [23]. Conversely,
the downside of deterministic solvers is that they involve more sophisticated
mathematics, numerical instabilities, and massive memory requirements. All of
which make the implementation of a deterministic solver for the BE a formidable
task.

We want to particularly emphasize advances in deterministic solvers based
on an expansion of k-space in spherical harmonics [24], since they are the most
widely employed deterministic solvers and they are relevant to the present work
(for a comprehensive review on spherical harmonics based solvers, see Ref. [25]).
The basic idea is that in equilibrium the distribution function is spherically
symmetric in k-space and therefore it can be mapped exactly to the leading order
in a spherical harmonics expansion of k-space. Non-equilibria can be modeled
as corrections using higher orders of the expansion, where it has been found
that the series converges quickly enough for the approach to reduce the total
number of unknowns significantly. Deterministic solvers based on the spherical
harmonics expansion have been applied to carrier transport in semiconductor
devices [26, 27, 28, 29]. Moreover, they have been used for magnetotransport
simulation [30], electrothermal simulations and degradation [31, 32], coupled hot
carrier and phonon systems [33], and avalanche breakdown of pn-junctions and
devices [34, 35].

Despite all of its complexities, the BE still models transport classically where
carriers are given definite positions and momenta and where quantum mechan-
ical effects such as interference or tunneling are disregarded. Approaches com-
prising quantum transport include the solution of the Wigner equation, see
e.g. Ref. [36] and references therein, or the non-equilibrium Green’s function
approach, see e.g. Ref. [37]. Both of these approaches are orders of magnitude
more computationally intense than the BE and bring their own share of prob-
lems. We will not concern ourselves with quantum transport in this work and
therefore we will not delve any further into this topic.

So far we have only discussed transport models but in nanoscale transistors
a discrepancy between classical models and reality occurs that is of significant
importance even in equilibrium and which needs to be addressed properly. As
the oxide thickness in MOSFETs decreases, the quantum mechanical splitting
of energy states into discrete levels becomes apparent where each energy level is
associated with a distinct probability amplitude to find carriers. The predom-
inant visible effect is that the carrier density close to the oxide becomes small,
i.e. carriers feel the high oxide potential and they are repelled by it. While there
are approaches to approximate the effect [38], the most reliable method is to
solve the Schrödinger equation (SE) directly and assume transport along – as
well as transitions in between – the eigenstates of the SE [39], which are often
referred to as subbands. In such an approach, the SE is solved perpendicular
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to the transport direction in order to compute the states and distribution of
carriers but transport itself is still governed by the classical BE.

When solving the SE perpendicular to the transport direction – which we
will refer to as the confinement direction –, we effectively obtain standing wave
solutions with discrete energies and thus discrete wave number components in
confinement direction. This means that k-space is partitioned into two sub-
spaces where the kinematically available components for the classical transport
– modeled through the BE – are reduced by the dimensions where the SE is
solved. Hence, when the SE is solved in one dimension, the BE will only have a
two-dimensional k-space, which means that the spherical harmonics expansion
of k-space is in fact reduced to a Fourier harmonics expansion [29, 40]. Solving
the two-dimensional SE amounts to a one-dimensional k-space of the BE which
can be feasibly solved deterministically by a straightforward discretization. Solu-
tions of such a system are useful to compute the properties of nanowires [41, 42].

Until now we have only discussed solvers for stationary solutions of a MOS-
FET’s operation. To be sure, they are important to know but for analog applica-
tions, we also need to know the MOSFET’s response to time-dependent biases.
In particular, its properties during small signal operation which reveal para-
sitics that otherwise do not impact the stationary operation (see e.g. Ref. [5]).
What is more, all devices generate noise, limiting the capabilities of amplifier
circuits [43] which include – most prominently – wireless modems whose om-
nipresence is compelled by the booming smartphone market. As the smartphone
market pushes to ever thinner and energy efficient devices, so do the require-
ments push for wireless modems with ever more advanced manufacturing nodes.
However, the small signal and noise behavior of advanced manufacturing nodes
is not well understood. With models that are only crude approximations to re-
ality [44], analog circuit design becomes more difficult, increasing the necessary
margins for error that need to be considered due to the discrepancies between
model and reality.

For small signal and noise analyses we can – in principle – use the same
simulation approaches as for the stationary case: There are compact models
for the small signal and noise behavior (see e.g. Refs. [5, 45]). The DD and
HD models can be linearized around some stationary operating point in order
to compute small signal effects [46] and a Langevin-source approach can used
in order to compute the noise [47, 48]. Just like the DD and HD models, the
BE can be linearized for a small signal simulation [49] and the Langevin-source
approach can be used for the computation of the noise [50, 51].

Although at first glance it seems straightforward to compute the small sig-
nal and noise behavior, the simulation of the BE and beyond is often limited
to the stationary case. In particular, since the BE is usually solved with the
MC method, small signal analysis requires additional care [52] but it is still
limited by the stochastic nature of the MC method. Moreover, simulation of
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RF transistor properties in the GHz range are computationally expensive when
plasma oscillations in the femtosecond time-scale need to be resolved with the
MC method [22, 53]. On the other hand, due to the way the MC method works,
the correlation function of electronic noise in a device is straightforwardly com-
puted for every solution of a stationary operating point [54, 55]. Nevertheless,
publications on the noise in devices computed using the MC method are few and
far between since the MC results for electronic noise are themselves subject to
statistical noise as well as the usual limitations of MC simulations such as the
difficulty to compute relevant frequency ranges of noise power spectra [56, 48].

A problem occurring solely in device simulations is that self-consistency of
all equations needs to be guaranteed in order to find meaningful results. Self-
consistency is usually attained by a Gummel type iteration [57], as is e.g. shown
in Ref. [39] for a nanoscale device. In this approach each equation is solved in
isolation, one after the other, until convergence is achieved. The implicit notion
being that while one equation is solved, quantities derived from the other equa-
tions are considered fixed. But in the case of a small signal or noise computation,
we would need to keep track of how small time-dependent perturbations and fluc-
tuations would impact other quantities which quickly becomes computationally
infeasible. Therefore, small signal and noise analyses often ignore all equations
except for the BE, which is used to compute the response in isolation. However,
this can only be faithful to reality when any difference in carrier densities arising
from the BE after freezing the fields cannot meaningfully impact them anymore.
This assumption is known to be violated in nanoscale devices [58] and thus not
only stationary results but also small signal and noise analyses must contain full
self-consistency.

Deterministic solvers are uniquely positioned to compute the small signal
parameters and the noise self-consistently in devices, since all equations can be
written down in a single large system of equations – including all interdepen-
dencies – and then solved simultaneously [29, 59, 60, 61, 62].

1.2 Current Work

The work compiled in this thesis follows in the footsteps of previous deterministic
solvers and attempts to solve the system consisting of Poisson equation (PE), SE,
and BE for a nanoscale nMOSFET. Due to the quantization in one dimension
by the SE, the BE is only solved for a two-dimensional k-space and therefore
we expand it in Fourier harmonics.

Previously existing work already solved the stationary problem for the self-
consistent system of PE, SE, and BE [29]. The current work expands on this by
implementing the first working Newton-Raphson solver over all equations for the
stationary problem [63], which has the advantage of rapid quadratic convergence



12 CHAPTER 1. INTRODUCTION

compared to the usual linear convergence of the Gummel type iteration.

From there, we derive a way to self-consistently solve the small signal prob-
lem. This is all but straightforward since the naive approach leads to the vi-
olation of conservation laws that should be fulfilled by real devices. However,
with a careful analysis of the equations, we are able to formulate the system of
equations such that it becomes physically sound [58].

Using the Langevin-source approach, we formulate the system of PE, SE,
and BE in such a way that we can compute the response of terminal currents to
fluctuations within the device self-consistently. Subsequently, we can compute
the noise power of terminal current fluctuations directly [58]. The advantage of
a BE based approach is that the noise is fully determined by the scattering rate
in the BE and hence there are no additional parameters necessary.

The deterministic approach enables us to self-consistently determine all small
signal and noise related quantities for a wide range of operating points and fre-
quencies, unencumbered by the stochastic nature of the usual MC approach.
Among these are the admittance parameters, cutoff frequencies, maximum os-
cillation frequencies, excess noise factors and the cross-correlation of noise [64].
All of which are key figures of merit for circuit designers.

Thus, we present the first ever fully self-consistent solver for small signal
and noise analyses of a system of equations consisting of PE, SE, and BE in a
nanoscale nMOSFET.

1.3 Structure of the Manuscript

This manuscript has a strong emphasis on completeness, showing all necessary
calculations and explaining all of the details necessary in order to reproduce
the results. Often problematic is the discretization where ambiguities may arise
and a lot of errors appear in the implementation. Hence, discretizations of
all equations are provided and difficult or problematic aspects are pointed out
and shown in which manner to resolve. Furthermore, significant reductions in
the size of the system of equations by eliminating equations and by exploiting
degeneracy are possible and are addressed in detail.

The contents are mostly arranged according to the structure of the problem.
Chapter 2 introduces the Poisson, Schrödinger, and Boltzmann equations in
their stationary form and gives instructions on how to transform and discretize
them in order to solve them deterministically. Most of the procedure has already
been shown elsewhere and references are included where appropriate. However,
the full Newton-Raphson approach of Sect. 2.5.2 has first been implemented in
the course of this work.

Once the stationary solution can be computed, the linearization of the equa-
tions yields a system of equations for the small signal response which is described
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in Chap. 3 along with a suitable terminal current definition. It is also addressed
how the symmetries of real devices put strong constraints on the symmetries
of the discretized system of equations. These constraints are not fulfilled for
arbitrary discretizations and therefore Chap. 3 also deals with the resolution of
these issues.

In Chap. 4, the Langevin-source approach is applied to the system where
we derive a computationally feasible form to solve the system directly for the
Green’s functions of the terminal currents. We also address the computation of
the power spectral density of the terminal current noise.

To support the legibility of this manuscript, the reader is encouraged to
refer to the appendix if they are in doubt about the meaning of a symbol or the
definition of a quantity. A nomenclature has been included in the end which
contains all symbols and their descriptions as well as references to their definition
in this manuscript. Furthermore, App. A contains definitions of all quantities
which are generally needed during the work on such a simulator.
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Chapter 2

Stationary Equations

In this chapter the three main equations are introduced. The Poisson equation
(PE) which yields the electric potential, the Schrödinger equation (SE) which
returns the wave functions and eigenvalues of the confined electron gas, and the
Boltzmann equation (BE) which describes the transport of carriers through the
device.

We begin with a quick tour through the whole procedure which uses an
exemplary device identical to the one used later in the results in Chap. 5. Then
we will dive into the details of each equation and how they can be fitted together.
Each equation has its own respective section which contains all information to
successfully set up a numerical solver. This includes the discretization scheme
used in this work where possible sources for errors and ambiguities are addressed
and resolved.

We end this chapter by showing how the PE, SE, and BE can be solved self-
consistently. This can either be achieved by an iteration over all three equations
or by a Newton-Raphson approach to solve the equations simultaneously.

The contents of this chapter are well known and documented in literature.
References will be given where appropriate.

2.1 Overview

Our goal is the simulation of the noise in a nanoscale nMOSFET. In order to
compute the noise, we first need to understand how the device behaves under
stationary operating conditions. This is the subject of the present chapter.

In general, the BE is so demanding that we cannot use some general solver,
apply it to an arbitrary problem, and see it solved straightforwardly. As is usual
in the domain of partial differential equations, methods and techniques need
to be delicately tailored to a specific problem, requiring the carefulness and
mental acuity of an experienced scientist to validate the success or understand

15
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Source Drain

Top Gate

Bottom Gate

y

x

z

Figure 2.1: The fully depleted nanoscale double gate nMOSFET with silicon
channel under consideration. Electron transport is in y-direction from source
to drain. The shades in the channel region indicate the donor doping density
where the contact regions are assumed to be doped heavily. Moreover, the
channel width (x-direction) is assumed to be very small such that the use
of the SE is adequate. The device is homogeneous in z-direction.

the failure modes of simulations.

Since this work is aimed at the deterministic simulation of noise, which in
itself is rather involved, we cannot hope to solve this problem in general and for
arbitrary devices. Instead we follow along the approach of Ref. [29] which con-
siders a fully depleted double gate nMOSFET with a silicon channel as shown
in Fig. 2.1. The carriers are confined in x-direction, transport happens in y-
direction from source to drain, and the z-direction is considered homogeneous.
We assume that the width of the channel in x-direction is quite small – some-
where in the nanometer range.

In order to understand how biases applied to the contacts and the doping
profile as well as carrier densities influence the electric potential, we need to
solve the 2D PE. However, a qualification that comes with nanoscale devices
is that carriers close to a very thin oxide do not behave classically anymore.
Instead we observe that carriers are pushed away from the oxide and their pre-
viously continuous range of energy states fans out into a discrete set of energy
levels [65, 39]. While there are approximations to this effect which work to some
extend [38], we can only accurately describe what happens if we solve the SE
itself.

We want to avoid bearing the brunt of a full quantum transport approach
but rather simulate transport classically with the BE while still including the
effects of the quantum mechanical carrier confinement. To this end, we will use
the dimensional splitting technique employed in Ref. [65, 29, 39], where we use
the electric potential to evaluate the 1D SE in x-direction, for each position in y-
direction. This yields a set of eigenstates – which we will henceforth call subbands
–, each with a discrete energy and a probability amplitude in x-direction. For
this reason, the x-direction is also referred to as the confinement direction.

Once the energy states of the confined carriers are known, we can use their
gradients in y-direction in order to find the electric force acting upon them within
their respective subbands. Then we can model the transport separately for each
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subband using the BE evaluated in y-direction. The hopping of carriers between
these subbands is described using scattering rates that are proportional to the
overlap of the respective probability amplitudes of the initial and final subbands
of the scattering process. In the remainder, we will refer to the y-direction as
the transport direction.

The whole procedure can be imagined as an interdependent set of equations
consisting of the PE, SE, and BE. The PE requires a carrier density and yields
the quasistatic potential. The electric potential is used to solve the SE on slices
in confinement direction to obtain subband energies and probability amplitudes.
The subband energies and probability amplitudes are used as input for the BE
in order to compute the carrier distribution function. The distribution function
is used to compute the density in order to solve the PE which completes the
cyclic dependence of the equations on each other.

Although not explicitly written down, the implementation of the solver de-
scribed throughout this work is handled in simulator units. That means any
physical quantity is normalized before it is used in the implementation and the
normalization is removed if the results need to be returned. The normalization
is such that quantities in simulator units usually values around unity from which
better numerical properties follow. Since this procedure is merely an implemen-
tation detail, it is described in App. B.

Many concepts of the present chapter are discussed – to varying degrees of
depth – in Ref. [29], however, we will go into more detail and be more explicit
in order to avoid any ambiguities in the numerical implementation.

2.2 Poisson Equation

The PE is one of the pillars of modern device simulation. It can be directly de-
rived from the stationary Maxwell equations and it describes the electric poten-
tial in a charged medium with some permittivity. The electric potential within a
semiconductor device is a fundamental quantity in many respects. First, its neg-
ative gradient yields the electric field, which is responsible for the acceleration of
charged carriers. Second, through its dependence on the space charge density,
it describes all built-in fields in the vicinity of interfaces of differently doped
regions. Third, through Dirichlet boundary conditions, the biases applied to the
contacts are contained in the electric potential. In this section, we will discuss
how the PE is set up for a two-dimensional device and how it is discretized in
our work.
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2.2.1 Equation

The PE reads

FPE(r) := ∇r · (κ(r)∇rV (r)) + ρ(r) = 0, (2.1)

where ∇r is the nabla operator, κ is the dielectric constant, V is the electric
potential, and ρ is the space charge density. The vector r = (x, y)t is considered
two-dimensional since we assume that the z-direction of our device is homoge-
neous (cf. Fig. 2.1) and therefore any z-dependence can be integrated out of the
PE. Note that for later convenience we put the PE in Eq. (2.1) in to a form,
where we can easily reference it completely using FPE.

Throughout this work, it will be assumed that the electric potential is qua-
sistationary. While we will later assume time-dependence, the associated wave
lengths are always assumed to be longer than the device such that Eq. (2.1)
holds.

The space charge density ρ in a semiconductor is determined by the ionized
donor density ND, the ionized acceptor density NA, as well as the electron
density in the conduction band n3D and the hole density in the valence band
p3D. Since we will only consider a fully depleted MOSFET with a doping density
exclusively consisting of donors, we can set the acceptor density to zero and
ignore the hole density:

ρ(r) = q(ND(r)− n3D(r)−NA(r) + p3D(r)) = q(ND(r)− n3D(r)), (2.2)

where q is the positive elementary charge.
To stabilize the PE, we use the usual non-linear transformation of the carrier

density given by [66]

n3D(r) = ni exp

(
V (r)− ϕn(r)

VT

)
, (2.3)

where ni is the intrinsic carrier density, ϕn is the quasi Fermi potential of elec-
trons, and VT = kBT/q is the thermal voltage with the Boltzmann constant
kB and the temperature T . Note that, technically, Eq. (2.3) is only valid if we
assume a Maxwell-Boltzmann distribution of electrons, i.e. if we omit the Pauli
principle. However, in the PE, we use Eq. (2.3) solely as a mathematical proce-
dure for stabilization. Thus, when we consider Fermi-Dirac statistics, the quasi
Fermi potential ϕn will implicitly include the effects of the Pauli principle.

2.2.2 Boundary Conditions

The PE is a second order differential equation which requires us to have two
boundary conditions per dimension. We will restrict our discussion to the device
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Figure 2.2: The black circles indicate direct grid points and the cross in-
dicates an adjoint grid point. The space charge density ρ and the electric
potential are defined on direct grid points, while the dielectric constant κ is
defined on the adjoint grid points. Each quantity is considered constant in
the rectangular region closest to the grid point of its definition, indicated
by the red and blue rectangles.

shown in Fig. 2.1. On the gates, we assume Dirichlet boundary conditions as

V (r)

∣∣∣∣
r∈∂DTG/BG

= V
TG/BG

appl + ϕMS, (2.4)

where V
TG/BG

appl is the applied bias at the top gate (TG) or bottom gate (BG),
ϕMS is the metal-semiconductor work function difference, and ∂DTG and ∂DBG

are the sets comprising the TG and BG contacts, respectively (cf. Fig. 2.1).

Everywhere else on the boundary of the device, we apply Neumann boundary
conditions. In particular, the potential at the source and drain contacts will be
adjusted through the boundary conditions of the BE, which will be discussed
later on in Sect. 2.4.3.

2.2.3 Discretization

We use the finite volume method [67] to discretize the PE. We assume a two-
dimensional rectangular tensor grid with grid points at positions denoted by
rki = (xk, yi)

t, where k and i are the indices of the grid points in x- and y-
direction, respectively. The space charge density and the electric potential are
defined on direct grid points while the dielectric constant is defined on adjoint
grid points. By direct grid points, we refer to the actual grid points of our
spatially discretized system, and by adjoint grid points, we mean points lying in
between those points as in Fig. 2.2. Each function is discretized either on the
direct or on the adjoint grid and is considered constant in the rectangular region
surrounding the respective grid point.
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Integrating Eq. (2.1) over a box R surrounding a direct grid point (cf.
Fig. 2.2) and using Gauss’s theorem yields

∫

∂R
dF · (κ(r)∇rV (r)) +

∫

R
dV ρ(r) = 0

which can be readily discretized on our tensor grid considering the domains of
definition of each quantity:

FPE
ki := κk,i−1

xk+1 − xk
2

Vk,i−1 − Vk,i
yi − yi−1︸ ︷︷ ︸

A

+κk,i−1
yi − yi−1

2

Vk+1,i − Vk,i
xk+1 − xk︸ ︷︷ ︸

B

+ κk,i
yi+1 − yi

2

Vk+1,i − Vk,i
xk+1 − xk︸ ︷︷ ︸

C

+κk,i
xk+1 − xk

2

Vk,i+1 − Vk,i
yi+1 − yi︸ ︷︷ ︸

D

+ κk−1,i
xk − xk−1

2

Vk,i+1 − Vk,i
yi+1 − yi︸ ︷︷ ︸

E

+κk−1,i
yi+1 − yi

2

Vk−1,i − Vk,i
xk − xk−1︸ ︷︷ ︸

F

+ κk−1,i−1
yi − yi−1

2

Vk−1,i − Vk,i
xk − xk−1︸ ︷︷ ︸

G

+κk−1,i−1
xk − xk−1

2

Vk,i−1 − Vk,i
yi − yi−1︸ ︷︷ ︸

H

+ ρk,i
xk+1 − xk−1

2

yi+1 − yi−1

2
= 0. (2.5)

Figure 2.3 illustrates the approach and the five-point stencil of our discretization
scheme. Note that for grid points on the device boundaries, the line segments
outside of the device do not contribute.

Due to the way the finite volume method works, for any grid point on a
boundary, Eq. (2.5) automatically ensures that no flux past the boundary occurs
and therefore Neumann boundary conditions are applied by construction.

For the gates, where we want to use Dirichlet boundary conditions, we can
replace the equations referring to the respective boundary points by

FPE
ki = Vki −

(
V

TG/BG
appl + ϕMS

)
= 0, for rki ∈ ∂DTG/BG.

2.2.4 Solution

There are two different ways in which we need to solve the PE in this work.
First, we need to solve it in isolation and, second, we need to solve it as part
of a larger system of equations with the BE and SE. If we solve the PE as a
standalone equation, we express the charge ρ using Eq. (2.3) and employ the
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Figure 2.3: The box-integration of the PE. The integration measure dF
points outwards of the box. The dielectric constants κ are defined in the
regions in between grid points. The derivatives evaluated on the surface
of the box are defined as indicated by the white circles, aligned with the
measure dF . The eight line segments denoted by A to H correspond to the
eight underbraced terms of Eq. (2.5).

Newton-Raphson method. The linear system to solve for each iteration is given
by

∑

`,m

∂FPE
ki

∂V`m
δV`m = −FPE

ki , (2.6)

where the space charge derivative is given by

∂ρki

∂V`m
= −q ni

VT
exp

(
Vki − (ϕn)ki

VT

)
δk`δim.

The PE is an elliptic differential equation and therefore it is guaranteed to be
solved uniquely with any initial guess. Thus, with any initial V , we can solve
Eq. (2.6) and then update the potential as

Vki −→ Vki + δVki.

Then solve Eq. (2.6) again and update the potential. This process is repeated
until the difference δV after each iteration becomes negligible which means we
can assume that we are close enough to the solution. During this work, we use
the sparse linear solver ILUPACK [68] to solve Eq. (2.6).
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Figure 2.4: Slices (dotted lines) on which the one-dimensional SE is solved
in x-direction.

If we solve the PE in conjunction with the BE, we need to express the space
charge density as a function of the distribution function. This will be discussed
in Sect. 2.5.2.

2.3 Schrödinger Equation

The SE is important for devices with very thin oxides where the details of
the inversion density close to the oxide contribute significantly. It describes
how carriers are pushed away from the oxide interface and how their states are
quantized into a discrete set of energy levels. Since we are solely interested in
the properties of electrons, we will restrict ourselves to this case.

The present discussion of the SE and its implementation is on of the simplest
possible cases which can also be found in, e.g., Ref. [69].

2.3.1 Equation

A discussion about electrons in periodic crystal lattice potentials usually involves
the simplification of the SE by splitting up the wave function into a known Bloch
function and an unknown envelope function and subsequently reducing the full
SE into an eigenvalue equation for the envelope function. The whole procedure is
well known and widely documented in literature. Therefore we will not concern
ourselves with the rationale leading to the application of the SE to this case and
refer the reader to, e.g., Refs. [6, 65, 69, 70].

We will solve the one-dimensional SE in confinement direction along slices
as indicated in Fig. 2.4. The stationary SE for the envelope function in one
dimension given by

εs(y0)Ψs(x, y0) = ĤΨs(x, y0) =

(
− ~2

2mx

∂2

∂x2
+ V(x, y0)

)
Ψs(x, y0), (2.7)

where ε is the energy eigenvalue which is also referred to as the subband energy,
Ψ is the envelope function and it will also be referred to as the wave function
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or eigenfunction, Ĥ is the Hamilton operator and mx is the effective electron
mass in x-direction. The superscript s indicates that we obtain an infinite set
of eigenvalues and eigenfunctions from the SE. All quantities have an additional
dependence on a position y0 in y-direction, since we cut the device into slices
and solve the 1D SE along each of these slices. Therefore we obtain separate
eigenvalues and eigenfunctions for each position y0 as the potential energy V
varies in this direction. The potential energy is simply given by the electric
potential acting on electrons:

V(x, y) = −qV (x, y). (2.8)

Note that we assume that the mass mx is constant, which will hold true through-
out this work.

An important underlying assumption of the Hamiltonian of Eq. (2.7) is that
the kinetic energy of an electron in the crystal lattice is given by p2/2mx, where
p is its momentum. This is not true in general but in the case of silicon we
can approximate the dispersion relation as a parabola – as is the case for free
particles – and use the effective mass to parameterize the inertia resulting from
the compound interaction of the underlying crystal lattice. The discussion of
the band structure is given in more detail in Sect. 2.4.1.

A straightforward way to improve the accuracy of the band structure is to
include a non-parabolicity factor as in Ref. [16, 71], however, this increases the
difficulty of solving the SE significantly. In this work we will restrict ourselves
to the case of a parabolic band structure where the effective mass mx is constant
throughout the semiconductor region, i.e. the Hamiltonian can be expressed as
in Eq. (2.7).

We will only ever refer to the stationary SE since we assume – just as for the
PE – that the subband energies εs and the wave functions Ψs are quasistationary,
i.e. they have sufficiently short relaxation times that even in the presence of a
time variation of the applied bias, they can follow along the perturbations in the
steady state.

2.3.2 Boundary conditions

The potential barriers at each end of the potential well in confinement direction
are formed by insulating materials. These potential barriers are in reality not
infinitely high and therefore the wave function actually penetrates the barriers
resulting in a non-zero chance to encounter carriers within the oxides. However,
for practical purposes we make the assumption that they are indeed infinitely
high and the wave functions vanish at the boundaries [69]. Thus, if we solve the
SE on a domain x ∈ [0, L], the boundary conditions read

Ψs(0, y0) = Ψs(L, y0) = 0. (2.9)
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Figure 2.5: Illustration of the infinite square well potential with the solutions
of the SE associated with the four lowest eigenvalues.

Thus, the basic problem we are dealing with is essentially similar to the
infinite potential well problem whose solutions are illustrated in Fig. 2.5. Such
a potential well gives rise to a set of bound states which are standing wave
solutions associated with a set of increasing energy levels.

2.3.3 Discretization

The discretization of the SE is straightforward. For a set of grid points xk =
x1, . . . , xNx and associated wave functions Ψs

k = Ψs
1, . . . ,Ψ

s
Nx

, we express the
second derivative on a grid point xk as a three-point stencil:

(
∂2

∂x2
Ψ(x)

)

k

=
2

xk+1 − xk−1

(
Ψk+1 −Ψk

xk+1 − xk
− Ψk −Ψk−1

xk − xk−1

)
,

where we omitted the superscript s and the dependence on y0 for brevity. Then
the SE reads

ε Ψk = − ~2

mx

1

xk+1 − xk−1

(
Ψk+1 −Ψk

xk+1 − xk
− Ψk −Ψk−1

xk − xk−1

)
− qVk Ψk.

The boundary conditions, given by Eq. (2.9), translate to the discretized system
as

Ψ1 = ΨNx = 0,

which can be applied by simply inserting them into the equations for the grid
points 2 and Nx − 1.
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2.3.4 Solution and Perturbation

The SE is an eigenvalue problem and in the discretized form, its Hamiltonian
is given by a real, symmetric, and tridiagonal matrix which we solve with the
routine DSTEVX contained in the LAPACK implementation of the Intel Math Kernel
Library [72].

The one dimensional SE is almost trivial to solve. In practice, the elapsed
time to solve the SE is negligible compared to what the BE needs.

Since the SE is an eigenvalue equation, we cannot straightforwardly include
it in a self-consistent system of equations like the PE and BE – the details of
which will be discussed in Sect. 2.5.2. For now, let us note that we need to know
how the subband energies and wave functions change if the potential changes
slightly. This is known as perturbation theory and to leading order – which is
all we will need in this work – the expressions are fairly simple [73].

Consider a Hamiltonian Ĥ of the stationary SE that has known solutions Ψs

associated with known energy eigenvalues εs. Suppose we change the potential
energy by a very small perturbation δV = −qδV :

Ĥ −→ Ĥ + δV.

Then, the eigenvalues and eigenfunctions will change in leading order as

δεs(y0) = − q
∫
dx |Ψs(x, y0)|2 δV (x, y0), (2.10)

δΨs(x, y0) = − q
∑

s′ 6=s

∫
dx′Ψs′(x′, y0) δV (x′, y0) Ψs(x′, y0)

εs(y0)− εs′(y0)
Ψs′(x, y0). (2.11)

In order to speed up the evaluation of the SE, it is tempting to truncate the
series of subband energies and wave functions at some subband index, however,
this is not possible when we use Eq. (2.11) due to the sum over all subbands.
Nevertheless, this is not a problem in practice as the one dimensional SE can be
solved nearly instantly on modern computers.

2.4 Boltzmann Equation

The BE is the central equation of our model. The BE is far more difficult to
understand than the PE or SE and it requires a more detailed explanation as
well as a plethora of transformations to be tamed into a numerically feasible
form.

This section is going to extend a bit further as quite a few important concepts
have to be introduced in order to make sense of the rest of this manuscript. A
certain amount of familiarity with the BE and the notation is required for the
later chapters which we hope the reader will be able to pick up in this section.
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However, the contents of this section are by no means new but have been
extensively studied in Refs. [26, 28, 29, 40] for various cases. Here, we are going
to consider the BE only for the case of a two-dimensional electron gas in order
to remove any unnecessary distractions that come from a treatment aspiring to
be general. Nevertheless, the concepts introduced here are applicable to other
cases as well.

2.4.1 Equation

In the most general case, the stationary BE is given by

[
FBE

]ν
(r,k) := Lν(r,k)− Sν(r,k)− Γν(r,k) = 0, (2.12)

where

Lν(r,k) :=
1

~
F ν(r) · ∇kf

ν(r,k) + vν(k) · ∇rf
ν(r,k)

is the free streaming term, S is the scattering term discussed later in this section,
Γ is a generation and recombination term discussed in Sect. 2.4.3, f is the
distribution function of carriers, F is the force acting on carriers, v is the group
velocity ∇r is the Nabla operator w.r.t. to the spatial coordinates, and ∇k is
the Nabla operator w.r.t. k-space. Note that we cast the BE into a form where
we can easily refer to it as FBE which will prove convenient later on.

The superscript ν = (v, s) indicates that transport can happen along dif-
ferent channels which, in our case, involve the valleys of the band structure of
silicon v and the subbands s emerging from the electron confinement. Unlike
the free streaming term L, the scattering term S can couple these channels by
establishing a mutual dependence by a scattering process.

In principle we would also need to carry an index denoting the electron spin,
but none of the scattering transitions we incorporate will have the ability to flip
the spin and therefore spin remains unchanged and can be ignored. It follows
that we may regard the BE of Eq. (2.12) as describing only, say, spin up electrons
and then multiply the resulting observables, like electron densities and currents,
with a factor of two since for every spin up electron, there is also a spin down
electron. We will discuss the multiplicities arising from degeneracies of the BE
in more detail in Sect. 2.4.6.

Now let us simplify the BE for the case we are interested in. Recall that the
device in Fig. 2.1 was assumed to be homogeneous in z-direction. Moreover, we
solve the SE in x-direction. Therefore, no quantity can depend on either x or
z and it follows that the force can only be exerted in y-direction from source
to drain, i.e. F (r) ≡ F (y)ey, and ∇rf

ν(r,k) = ∂
∂yf

ν(y,k)ey. Then the free



2.4. BOLTZMANN EQUATION 27

streaming term of the BE reduces to

Lν(y,k) =
1

~
F ν(y)

∂

∂ky
fν(y,k) + vνy (k)

∂

∂y
fν(y,k), (2.13)

where we defined the y-direction of the group velocity as vy, i.e. v · ey =: vy.
Furthermore, the standing wave solutions of the SE in x-direction are equiv-

alent to superpositions of waves propagating parallel and antiparallel to the
x-direction which are associated with wave numbers ±kxex. Thus, by solving
the SE, we already fixed the wave number in x-direction, leaving only the other
two dimensions as variables for the BE which is equivalent to a two-dimensional
electron gas:

k :=

(
ky
kz

)
.

The Lorentz force F is classically given by the electric field which is the
negative gradient of the electric potential. But in our case, we use the SE
to obtain a spectrum of discrete eigenvalues that are occupied by electrons to
various degrees. These so called subband energies may vary along the transport
direction of the device representing the varying potential energy similar to the
potential energy a charge feels in an electric field. Therefore our force in the
channels of transports, i.e. in the various subbands, is given by the gradient of
the subband energy:

F ν(y) = − ∂

∂y
εν(y) (2.14)

and therefore the force is both valley and subband dependent.
The scattering term S of Eq. (2.12) in 2D k-space and for one spatial di-

mension is given by

Sν(y,k) = Ω
∑

η,ν′

∫
d2k′

(2π)2

[
(1− fν(y,k)) Sν,ν

′
η (y;k,k′) fν

′
(y,k′)

− (1− fν′(y,k′)) Sν′,νη (y;k′,k) fν(y,k)

]
,

(2.15)

where Ω is the system area and Sν,ν
′

η (y;k,k′) is the transition rate at position
y from the state (ν ′,k′) to the state (ν,k) by the scattering process η. The
specific transition rates used in this work will be discussed in Sect. 2.4.2. Note
that Eq. (2.15) includes the Pauli exclusion principle via the factors (1 − f)
which reduce the scattering rate if the distribution function f of the final state
is close to unity.
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In the remainder of this work, we will usually include the Pauli principle
but occasionally we will compare to the case without the Pauli principle to
acknowledge its importance. In that case we use the scattering term

[
Sno Pauli

]ν
(y,k) = Ω

∑

η,ν′

∫
d2k′

(2π)2

[
Sν,ν

′
η (y;k,k′) fν

′
(y,k′)

− Sν′,νη (y;k′,k) fν(y,k)

]
.

(2.16)

Any derivations shown in the remainder of this work are equally applicable to
the scattering term without the Pauli principle.

Band Structure

The band structure of silicon is well known and described in many text books on
semiconductor devices [6, 69, 74]. In this work, we will only consider the six most
important valleys – named X-valleys – which represent the six absolute minima
of the silicon band structure. In addition, we assume that the crystal coordinate
system is aligned with the device coordinate system, i.e. two X-valleys are lo-
cated on each coordinate axis in k-space. Figure 2.6 shows equienergy surfaces
for the six X-valleys of the silicon band structure. The equienergy surfaces can
be approximated as prolate ellipsoids of revolution where the large semi-axes
are aligned with the axes of k-space. An electron located in one of these valleys
will appear to have a large mass when it is accelerated in the direction of the
large semi-axis, while its mass appears small when it travels in the direction of
one of the small semi-axes.

Close to the minimum of an X-valley, we can assume that the band structure
is approximately parabolic where the inertia of electrons is quantified through
the longitudinal and transversal effective masses given by [75]

ml = 0.919m0, mt = 0.19m0, (2.17)

respectively. These effective masses are the cumulative effect of the underlying
silicon lattice on an electron. Therefore the dispersion relation – or kinetic
energy – in a valley v can be expressed as [69]

εvtot(kx, ky, kz) =
~2

2

(
(kx −Kv

x)2

mv
x

+

(
ky −Kv

y

)2

mv
y

+
(kz −Kv

z )2

mv
z

)
,

where Kv =
(
Kv
x Kv

y Kv
z

)t
is the displacement of the valley minimum v

in 3D k-space. Note that the effective mass of electrons is non-isotropic and
valley-dependent due to the orientation of the ellipsoidal shape of the equienergy
surfaces of the valleys (cf. Fig. 2.6).
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Figure 2.6: Illustration of the equienergy surfaces of the six X-valleys of
the silicon band structure. The equienergy surfaces can be approximated as
prolate ellipsoids of revolution where the large semi-axes align with the axes
of k-space. Due to the non-isotropy of the valleys, electrons have different
effective masses – ml, mt, or a combination thereof – depending on their
direction of travel as indicated in the figure.

To simplify matters, we can treat the kinematics of each valley separately
and use a valley dependent coordinate translation given by

(
kx ky kz

)t −→
(
kx ky kz

)t
+ (Kv)t.

Then, the dispersion relation in the valley v simplifies to

εvtot(k) =
~2

2

(
k2
x

mv
x

+
k2
y

mv
y

+
k2
z

mv
z

)
, (2.18)

where from here on out it is implicitly understood that vectors in k-space are
always given relative to the minimum Kv of the valley v under consideration.

Due to the dimensional splitting into the SE and BE, the x-component kx is
no longer a kinematic variable but is fixed by the standing wave solution of the
SE. Therefore k-space is reduced to the 2D case and the equienergy surfaces of
the band structure are projected on the yz-plane of k-space as in Fig. 2.7. The
total energy of an electron is the sum of its eigenvalue in confinement direction
and the kinetic energy in the remaining kinematic yz-plane:

εv,stot(k) = εv,s + Ev(k)
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Figure 2.7: Illustration of the equienergy surfaces of the six X-valleys of the
silicon band structure in the 2D k-space of the BE. The effective masses of
electrons in the two directions of travel are as indicated.

where εv,s is the energy eigenvalue of the SE of Eq. (2.7) and the dispersion
relation in the remaining kinematic yz-plane reads

Ev(k) =
~2

2

(
k2
y

mv
y

+
k2
z

mv
z

)
. (2.19)

Note how the continuum of values of the kx-component is reduced to the set of
discrete subbands s associated with a fixed energy and therefore a fixed value
of kx.

2.4.2 Scattering Terms

When moving through matter, charged carriers experience a resistance1 which
is a consequence of microscopic scattering processes. In the following, we will
describe the scattering of carriers which is well understood for silicon and can
be looked up in, e.g., Ref. [69]. One of the dominant effects in semiconductors is
the scattering with phonons, which are the quasiparticles of lattice vibrations.
Consider a semiconductor like silicon with a finite temperature. Then its crystal

1Neglecting extreme phenomena such as superconductivity.
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lattice of silicon atoms vibrates and these vibrations come in different forms
which can be characterized as acoustical and optical as well as transversal and
longitudinal modes. The vibrational modes – or phonons – warp the underlying
crystal lattice and carriers traversing the lattice will experience the electromag-
netic effects of the warped lattice. The exposure of carriers to the presence of
an electromagnetic force, like when a phonon and an electron experience each
other’s presence, can be modeled by a one-time scattering event and using the
statistical distributions of electrons and phonons, we can find the rate at which
these scattering events occur. The rate of scattering in the BE is tantamount
to the resistance carriers experience in the crystal.

Another important scattering process that we are interested in is specific to
MOSFETs. The fabrication of the gate oxide on the silicon channel always leads
to an imperfect oxide-silicon interface. Usually this is referred to as the surface
roughness which is quantified statistically using a mean height of the imperfec-
tions and a correlation length. The surface roughness warps the silicon crystal
on a microscopic scale which the carriers feel in the vicinity of the interface.
Similar to the phonon scattering process, we can model the surface roughness
scattering as instantaneous one-time scattering events and subsequently obtain
a rate of scattering with the carrier distribution.

Finally, there is ionized impurity scattering. Transistors are doped with
foreign atoms to ensure adequate amounts of carriers in the conduction band.
But these doping atoms are ionized defects in the crystal lattice which perturb
the uniformity of the crystal lattice and which carriers experience as Coulomb
scattering targets. The difficulty in the impurity scattering is that the computed
scattering terms diverge unless the screening of the ionized impurities by carriers
is included. This presents a problem in the approach employed in this work.
For now, it suffices to say that in the channel region of our devices, where
the interesting transport phenomena happen, the ionized impurity scattering is
negligible due to the low density of dopants. In the contact regions, where the
doping is high, it acts as a resistance and can be modeled via other means.

All other scattering processes can be neglected for the purposes of our present
work.

General Approach

The scattering processes discussed in this work have been studied extensively in
the quantum mechanical framework and they rely on a deep knowledge of the
underlying interactions. One of the main assumptions of scattering theory is
that the incoming and outgoing particles can be considered free when they are
still far apart. Usually we know the exact solution of free particles and therefore
we model them as approaching each other from infinity as free particles and
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treat the interaction as a perturbation of the free state.2

Carriers in condensed matter are never free in the sense that there is nothing
to interact with in their environment. Instead, they are subject to the sum of
the potentials of the underlying lattice. However, the sum of all interactions
with the underlying crystal lattice gives rise to the band structure, i.e. a dis-
persion relation that describes how particles experience inertia when they are
accelerated. Moreover, considering that particles prefer occupying the lowest
accessible energies in equilibrium, we can often approximate the band struc-
ture as a dispersion relation similar to the dispersion relation of free particles
by, e.g., defining effective masses as in the parabolic band structure model (see
Sect. 2.4.1). Once we know a dispersion relation for a band, a scattering process
can be modeled as a perturbation of that state.

Perturbation theory results in an infinite series of terms that – in its totality
– represents the integral over the interaction of the particles’ trajectories. Indi-
vidually each of these terms represents a certain amount of scattering vertices. If
the interaction is very weak, we can safely ignore it at large distances, however,
when the two particles are at a very close range, even the faintest interaction will
quickly change both particles’ trajectories. Omitting all but the leading terms
of the perturbation expansion is called the Born approximation [73] which is
equivalent to assuming that the interaction is instantaneous.

Now, if we assume that we have a carrier in the state α and a scattering
target that creates a potential V felt by the carrier, we may formulate the rate
of such a scattering process with Fermi’s Golden Rule [73]

Sα→β =
2π

~
|Mα→β|2 δ(Eα − Eβ), (2.20)

where Sα→β is the transition rate of a scattering process from state α to state
β, Mα→β = 〈β|V|α〉 is the matrix element of the incoming particle in state α
scattering via the potential V to an outgoing state β, and Eα, Eβ are the energies
of the respective states.

In order to streamline our notation, we are going to introduce a factor we
call the transition rate coefficient cα→β as

Sα→β =:
1

Ω
cα→βδ(Eα − Eβ) (2.21)

which will be useful later on. Here, Ω is the system area present in all transition
rates which cancels with the system area found in the scattering integral of
Eq. (2.15).

We will not concern ourselves with the details of the derivation of the matrix
elements for each scattering process as they can be found in literature. Hence,

2Perturbation theory is only valid if the interaction is weak enough so that the perturbation
series converges.
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we are going to present the matrix elements and reference appropriate text books
for the reader to study if need be.

Phonon Scattering

Phonon scattering is of great importance to our work as it is the mechanism by
which the temperature of the crystal lattice affects carriers and vice versa. The
derivation of the matrix element takes some effort and in order to get correct
results it has to be approached quantum mechanically by means of the second
quantization [69]. This results in two distinct matrix elements for absorption
and emission of a phonon by an electron which are given by

|M (ab);ν,ν′(y;k,k′)|2 = δk′,(k+q)

π~
ρΩ

∫

qx

|D(Q)|2
ωλ(Q)

nλ(Q)|Gν,ν′(y; qx)|2dqx, (2.22)

|M (em);ν,ν′(y;k,k′)|2 = δk′,(k−q)

π~
ρΩ

∫

qx

|D(Q)|2
ωλ(Q)

(nλ(Q) + 1)|Gν,ν′(y;−qx)|2dqx,

(2.23)

where ν, ν ′ are the compound valley and subband indices; k,k′ are the initial
and final electron two-momenta, respectively; λ indicates the polarization of the
phonon; Q = (qx, q) is the phonon three-momentum; ρ is the mass density of
the silicon crystal; ωλ is the dispersion relation of the phonon with polarization
λ; nλ(Q) is the number of phonons with polarization λ and three-momentum
Q; and

Gν,ν
′
(y; qx) =

1

2π

∫
dx (Ψν(x, y))∗Ψν′(x, y)eiqxx

is the overlap integral of the wave functions determined by the SE. The defor-
mation potential of the phonons is given by

D(Q) =

{
i
2

∑3
i,j=1 Ξij(eλ,iQj + eλ,jQi), for acoustical phonons,

Dop, for optical phonons,

where Ξij are the components of a 3×3-matrix collecting the deformation poten-
tials of acoustical phonons and eλ,i and Qi are the components of the polarization
vector eλ and the phonon three-momentum Q, respectively.

With the matrix elements, we can write down the transition rate according
to Fermi’s Golden Rule of Eq. (2.20) as

Sλ;ν,ν′
phonon(y;k,k′) =

2π

~
|M (ab);ν,ν′(y;k,k′)|2δ(ενtot(y,k)− εν′tot(y,k

′) + ~ωλ(Q))

+
2π

~
|M (em);ν,ν′(y;k,k′)|2δ(ενtot(y,k)− εν′tot(y,k

′)− ~ωλ(Q)),

(2.24)
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Figure 2.8: Illustration of phonon dispersion relations
in silicon along the [100] direction of transverse opti-
cal (TO), longitudinal optical (LO), longitudinal acoustic
(LA), transversal acoustic (TA) phonons (see Refs. [69,
76, 77]). The lattice spacing of silicon is given by
a0 ≈ 0.54 nm.

where the total energy is defined as the sum of the subband energy and the
kinetic energy, i.e.

ενtot(y,k) = εν(y) + Ev(k).

In practice the phonon transition rate of Eq. (2.24) is often simplified fur-
ther. One observation about phonons is that they come in two flavors, acoustical
and optical, which have very different dispersion relations. The dispersion rela-
tions of acoustic modes are – at low energies – approximately proportional to
the magnitude of the momentum, while the optical modes have approximately
constant energy, irrespective of their momenta, see Fig. 2.8.

The distinction between acoustical and optical modes leads to the approx-
imation of Eq. (2.24) into two separate transition rates. The first one is the
scattering by low-energy acoustical phonons which, in leading order, can be re-
garded as elastic and due to the insufficient energy transfer electrons remain in
the valley they originated in. The second one is the scattering by optical modes
which can be approximated to have fixed energy transfers. These phonons have
sufficient energy to scatter electrons into another valley. In the following two
sections we will find adequate representations for these transition rates. The
content of these sections is already documented in literature in, e.g., Ref. [69].

Intra-Valley Acoustic Phonon Scattering

To simplify the transition rate of Eq. (2.24) to something computationally fea-
sible, we will use multiple approximations. First, as Fig. 2.8 suggests, the dis-
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persion relation of acoustical phonons can be approximated as

~ωλ(Q) ≈ ~vλ|Q|,

where vλ is the sound velocity of acoustical phonons with polarization λ. Second,
we use the energy equipartition approximation which states that the average
number of phonons in equilibrium, which follow the Bose-Einstein statistics,
can be approximated as

nλ(Q) =
1

exp
(
~ωλ(Q)
kBT

)
− 1

=
kBT

~ωλ(Q)
− 1

2
+O(Q). (2.25)

Third, we assume the transition rate to be isotropic which means that the de-
formation potential for acoustic phonons takes the form

D(Q) ≈ Dac|Q|, (2.26)

where Dac is the effective deformation potential.
Inserting these approximations into Eqs. (2.22), (2.23) and using Fermi’s

Golden Rule of Eq. (2.24), we find for the transition rate of acoustic phonons

Sν,ν
′

ac (y;k,k′) =
2π

~
δ(ενtot(y,k)− εν′tot(y,k

′))

×
(
|M (ab);ν,ν′(y;k,k′)|2 + |M (em);ν,ν′(y;k,k′)|2

)

=
2π

~
π~
ρΩ

δv,v′ δ(ε
ν
tot(y,k)− εν′tot(y,k

′))

×
[
δk′,(k+q)

∫
D2

ac|Q|2
vλ|Q|

(
kBT

~vλ|Q|
− 1

2

)
|Gν,ν′(y; qx)|2dqx

+ δk′,(k−q)

∫
D2

ac|Q|2
vλ|Q|

(
kBT

~vλ|Q|
+

1

2

)
|Gν,ν′(y;−qx)|2dqx

]

Note that we added a Kronecker delta δv,v′ since electrons cannot scatter to other
valleys. Since the only dependencies on qy and qz are through the magnitude
of the phonon three-momentum |Q|, the Kronecker deltas δk′,(k+q) and δk′,(k−q)

are interchangeable. Moreover, the identity |Gν,ν′(y; qx)|2 = |Gν,ν′(y;−qx)|2 can
be trivially derived since the wave functions Ψν are real. Lastly, we can simplify
the integral over qx as
∫
|Gν,ν′(y; qx)|2dqx =

1

2π

∫
dx |Ψν′(x, y)|2 |Ψν(x, y)|2 =:

1

2π
Rν,ν

′
(y). (2.27)

Thus, the final expression for intra-valley elastic acoustic phonon scattering reads

Sν,ν
′

ac (y;k,k′) ≈ 1

Ω
δv,v′

2πkBTD
2
ac

~ρv2
λ

Rν,ν
′
(y)δ(ενtot(y,k)− εν′tot(y,k

′))
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We summarize the scattering process in the transition rate coefficient for
later reference:

Intra-Valley Elastic Acoustic Phonon Scattering

cν,ν
′

η (y)

∣∣∣∣
η=ac

= δv,v′
2πkBTD

2
ac

~ρv2
λ

Rν,ν
′
(y), (2.28)

quantity value description

kB 8.617 330× 10−5 eV K−1 Boltzmann constant

T 300 K temperature

δv,v′ — intra-valley scattering

Dac 20 eV effective deformation potential

ρ 2.33× 103 kg m−3 mass density of silicon crystal

vλ 9.05 m s−1 sound velocity of acoustic phonons

Rν,ν
′

Eq. (2.27) overlap integral

where η indicates the type of scattering which we will refer to as η = ac in the
case at hand.

The value for the deformation potential Dac depends on the device in ques-
tion since it has been experimentally confirmed that it is actually position de-
pendent: closer to the oxide interface carriers feel larger deformation poten-
tials than further away [78, 79]. Averaging over such a position dependence to
find a constant effective deformation potential Dac leads to a device dependence
where devices with thin channels will require a larger deformation potentials than
bulk devices in order to obtain simulated mobilities approximating experiments.
Hence, simulations of bulk silicon typically use values around Dac ≈ 10 eV [80],
while bulk MOSFETs where carriers accumulate close to the oxide use values of
around Dac = 12 eV [81] to Dac = 14.8 eV [82]. Silicon-on-Insulator MOSFETs
with ultrathin channels require even higher deformation potentials.

Since we will be simulating a double gate MOSFET with an ultrathin chan-
nel (cf. Fig. 5.1), the deformation potential in this work is rather high at
Dac = 20 eV. This is necessary in order to approximate experimentally mea-
sured mobilities for similar devices (cf. Sect. 5.1.1).

Inter-Valley Phonon Scattering

Inter-valley phonon scattering has been studied thoroughly and the approxima-
tions presented in this section can be found in Refs. [54, 69, 83]. We are going
to repeat the most important aspects for completeness and for later reference.



2.4. BOLTZMANN EQUATION 37

The band structure of silicon has six X-valleys lying at ±0.852π
a0

on each

axis of 3D K-space3 in the crystal coordinate system (see Fig. 2.6), where a0 ≈
0.54 nm is the lattice spacing of the silicon crystal. These X-valleys represent
the six absolute minima of the silicon band structure and they are all we will
concern ourselves with during this work. A scattering process of an electron in
the conduction band with a phonon may exchange sufficient momentum such
that the electron changes the valley it occupies. The phonon momentum of such
a process is given by

Q = ±(K ′ −K) + G, (2.29)

where K and K ′ are the electron three-momenta in the crystal coordinate sys-
tem before and after scattering, respectively, and G is the reciprocal lattice
vector. The upper and lower sign correspond to absorption and emission, re-
spectively.

In the following it will be assumed that the deviations of K and K ′ from the
positions of the valley minima in K-space are negligible compared to the distance
between the valleys. Thus, each transition between valleys can be identified with
a constant momentum transfer Q. Moreover, if we take the perspective from an
electron in one of the six X-valleys, we find that we only have to distinguish two
different transitions as shown in Fig. 2.9. First, the transition to the opposing
valley, which is referred to as a g-type transition. Second, the f -type transitions
to one of the neighboring valleys.

As the phonon momentum resides within the first Brillouin zone, there is
only one possible value for Q for each type of transition. A vector Q is defined
to be in the first Brillouin zone if it fulfills

|Qx|, |Qy|, |Qz| ≤
2π

a0
and |Qx|+ |Qy|+ |Qz| ≤

3

2

2π

a0
.

In the case of a g-type transition we may, without loss of generality, assume the
initial and final momenta of the electron as

K = (0.85, 0, 0)
2π

a0
, K ′ = (−0.85, 0, 0)

2π

a0
.

For absorption, Eq. (2.29) with the upper sign suggests

Qg = (0.3, 0, 0)
2π

a0
with G = (2, 0, 0)

2π

a0
,

where G was chosen such that Qg resides in the first Brillouin zone. In fact, Qg

is the only solution of Eq. (2.29) in the first Brillouin zone.

3We use an upper case K to denote the 3D case.
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Figure 2.9: Illustration of f - and g-type inter-valley phonon scattering pro-
cesses from the perspective of the X-valley on the positive kx-axis (yellow
valley). A g-type process scatters the electron to the opposing valley, while
an f -type process scatters it to an adjacent valley.

Likewise, for an f -type transition, we may choose two neighboring X-valleys
as

K = (0, 0.85, 0)
2π

a0
, K ′ = (0, 0, 0.85)

2π

a0
,

which also has a unique solution in the first Brillouin zone given by

Qf = (1, 0.15,−0.15)
2π

a0
with G = (1, 1,−1)

2π

a0
.

Although we looked at only one g-type transition and f -type transition, it
is obvious that transitions from and to other valleys are completely analogous
resulting in

|Qg| = 0.3
2π

a0
, |Qf | = 1.02225

2π

a0
.

Since we know the magnitudes of the momentum transfers, we can use the
associated deformation potentials of the various kinds of phonons available to
read off the associated energy transfer from their respective dispersion relations.
Table 2.1 summarizes the deformation potentials and transfer energies for the
six available processes that need to be considered in our work [54, 71, 84, 85].
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Phonon process η ~ωη[meV] Dη[1010 eV m−1]

g-type, transversal acoustic g1 12.1 0.47

g-type, longitudinal acoustic g2 18.5 0.74

g-type, longitudinal optical g3 62.0 10.23

f -type, transversal acoustic f1 19.0 0.280

f -type, longitudinal acoustic f2 47.4 1.860

f -type, longitudinal optical f3 58.6 1.860

Table 2.1: Summary of phonon energies and deformation potentials involved in inter-valley
phonon scattering processes in silicon [54, 71, 84, 85].

Using Fermi’s Golden Rule of Eq. (2.24) and the phonon scattering matrix
elements of Eqs. (2.22) and (2.23), we obtain for the inter-valley phonon scat-
tering transition rate of type η:

Sν,ν
′

η (y;k,k′) =
π

ρΩ

D2
η

ωη
Rν,ν

′
(y)

[
nλ(~ωη) δ(ενtot(y,k)− εν′tot(y,k

′) + ~ωη)

+(nλ(~ωη) + 1) δ(ενtot(y,k)− εν′tot(y,k
′)− ~ωη)

]
.

(2.30)

Note that inter-valley transitions obviously have to occur between different val-
leys which was left implicit in this equation. Furthermore, the phonon number
nλ of Eq. (2.25) needs to be evaluated without the equipartition approximation
due to the high phonon energies.

We can write down the transition rate using the transition rate coefficient
yielding

Sν,ν
′

ησ (y;k,k′)

∣∣∣∣η= fi,gi
σ=±1

=
1

Ω
cν,ν

′
η (y;k,k′)

× δ(ενtot(y,k)− εν′tot(y,k
′) + σ~ωη)

∣∣∣∣η= fi,gi
σ=±1

,

where σ = ±1 determines the sign of the energy transfer. Thus, the transition
rate coefficient reads:
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Inter-Valley Phonon Scattering

cν,ν
′

η (y;k,k′)

∣∣∣∣
η=fi,gi

=
π

ρ

D2
η

ωη
Rν,ν

′
(y)

[
nλ(~ωη) + Θ(εν

′
tot(y,k

′)− ενtot(y,k))

]

(2.31)

quantity value description

ρ 2.33× 103 kg m−3 mass density of silicon crystal

fi, gi Tab. 2.1 type of transition

Dη Tab. 2.1 effective deformation potential for phonon
of transition type η

ωη Tab. 2.1 angular frequency of phonon type η

Rν,ν
′

Eq. (2.27) overlap integral

nλ(~ωη) Eq. (2.25) phonon number (without equipartition
approximation)

Θ — Heaviside step function

Note that the transition rate coefficient of Eq. (2.31) was written down somewhat
peculiarly with a Heaviside step function Θ. To understand the reasoning for
this, let us describe the scattering process phenomenologically. The scattering
integral of Eq. (2.15) describes the rate of scattering in a state (ν, k) at some
position y. The first term on the r.h.s. of Eq. (2.15) is the rate of in-scattering,
i.e. how many electrons transition from any other state (ν ′,k′) to the state
(ν,k). The second term on the r.h.s. is the out-scattering term which is the rate
at which electrons in the state (ν,k) transition to any other state.

For inelastic scattering like the inter-valley phonon scattering, the distinction

between in-scattering Sν,ν
′

η (y;k,k′) and out-scattering Sν
′,ν
η (y;k′,k) is crucial

due to the difference in emission and absorption in Eq. (2.30).

If we assume two different energy levels where, say, ενtot(y,k) > εν
′

tot(y,k
′),

then the phonon is absorbed during in-scattering because the electron transitions
from (ν ′,k′) to (ν,k), gaining energy in the process. However, if we describe
the out-scattering, we find that the electron transitions from (ν,k) to (ν ′,k′),
i.e. the electron loses energy in the process which means a phonon is emitted.

Therefore, the crux of writing the transition rate down compactly with the
transition rate coefficient of Eq. (2.31) is to differentiate the cases of absorption
and emission adequately. The deciding property that tells us whether we are
dealing with absorption or emission is whether the electron gains or loses energy
during scattering, which is why we used the Heaviside step function in Eq. (2.31).
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Surface Roughness Scattering

The idea behind surface roughness scattering is that the interface between semi-
conductor and oxide is not perfectly smooth but exhibits miniscule variations.
These variations, which are usually called roughness, alter the potential per-
ceived by carriers and therefore lead to scattering. At the time of this writing,
the exact computation of the surface roughness scattering is still not fully under-
stood as there exist multiple descriptions and the details of the approximations
are still somewhat under debate [86].

However, all of the approaches depend on a statistical modeling of the rough-
ness and involve the details of how the density of carriers, i.e. the wave functions,
behave close to the interface.

For the purposes of this work, we will be satisfied with the simplest descrip-
tion that goes back to Prange and Nee [87]. Thus, we can write down the matrix
element of surface roughness scattering as

|Mν,ν′
SR (y;k,k′)|2 ≈ 1

Ω
〈|∆q|2〉 |Γν,ν

′
PN (y)|2,

where q = k′ − k is the momentum transfer. We assume an exponential model
for the power spectrum of the surface roughness given by

〈|∆q|2〉 = π∆2L2

(
1 +
|q|2L2

2

)−γ
,

where ∆ and L are the root mean square height and correlation length of the
roughness, respectively. Note that sometimes the power spectrum is also chosen
to have a Gaussian form [88], though, Ref. [89] shows that the exponential form
with an exponent of γ = 1.5 is a better fit to experimental measurements. Both
∆ and L are fitting parameters that have to be adjusted to obtain the correct
low-field mobility. Furthermore, the Prange-Nee term is given by

Γν,ν
′

PN (y) =
~2

2mv
x

∂Ψν(x, y)

∂x

∂Ψν′(x, y)

∂x

∣∣∣∣
x=x0

,

where x0 denotes the position of the interface. Since surface roughness scattering
is considered to be elastic, electrons cannot change valleys. Thus, with Fermi’s
Golden Rule of Eq. (2.20) the transition rate reads

Sν,ν
′

η,σ (y;k,k′)

∣∣∣∣η= SR
σ=0

= δv,v′
1

Ω

π~3

2(mv
x)2
〈|∆q|2〉

∣∣∣∣
∂Ψν(x, y)

∂x

∂Ψν′(x, y)

∂x

∣∣∣∣
2

× δ(εν′tot(y,k
′)− ενtot(y,k))

∣∣∣∣
x=x0

(2.32)
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We can express the magnitude of q as

|q|2 = |k′|2 + |k|2 − 2|k′||k| cos(φ′ − φ),

where it becomes evident that not only does the transition rate depend on the
initial and final energy of the electron but it is also angular dependent, which
increases the computational load significantly (cf. the projection onto Fourier
harmonics in Sect. 2.4.4).

Since we have to fit the parameters ∆ and L of the surface roughness scat-
tering to the low-field mobility anyway, we can justify another approximation.
If we assume that surface roughness scattering is an intra-subband process, the
elasticity of the scattering suggests |k′| = |k|. If we assume additionally that the
equienergy lines are circles (cf. Sect. 2.4.4 on the Herring-Vogt transformation)
represented by the Herring-Vogt mass mv

d =
√
mv
ym

v
z , we find

|q|2 = 2|k|2(1− cos(α)) =
4mv

dE

~2
(1− cos(α)),

where α = φ′ − φ is the opening angle between the initial k and final k′ of the
electron. Note that usually |k(E)| is angular dependent due to the ellipsoidal
shape of the valleys but we anticipate that we will later, in Sect. 2.4.4, use the
Herring-Vogt transformation accompanied by the approximation that we can
evaluate the scattering processes as if k-space were Herring-Vogt transformed
(cf. Eq. (2.52)).

By using the microscopic relaxation time approximation [90, 91, 92, 93], we
can construct a transition rate that is angular independent but whose total rate
coincides with the total rate obtained from the transition rate of Eq. (2.32). The
microscopic relaxation time for intra-subband processes can be expressed as

1

τν(E)
= Ω

∫
dE′ dα ZvSν,ν(k′(E′),k(E)) (1− cos(α))

= Zv
π2~3

2(mv
x)2

∣∣∣∣∣
∂Ψν(x, y)

∂x

∣∣∣∣∣

4 ∣∣∣∣
x=x0

×∆2L2

∫ 2π

0
dα

1− cos(α)(
1 +

2mvdE

~2 L2 (1− cos(α))
)γ ,

(2.33)

where – in general – the integral over α has to be solved numerically due to the
free parameter γ.

Thus the angular independent transition rate that yields the same total scat-
tering rate is given by

S̄ν,ν
′

η,σ (y;k,k′)

∣∣∣∣η= SR
σ=0

=
1

Ω

δν,ν′

2π

1

Zvτν(E(k))
δ(εν

′
tot(y,k

′)− ενtot(y,k)), (2.34)
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which can be easily verified by inserting Eq. (2.34) into Eq. (2.33). Subsequently,
the transition rate coefficient reads

Surface Roughness Scattering

cν,ν
′

η (y)

∣∣∣∣
η=SR,x0

=
δν,ν′

2π

π2~3

2(mv
x)2

∣∣∣∣∣
∂Ψν(x, y)

∂x

∣∣∣∣∣

4 ∣∣∣∣
x=x0

∆2L2

×
∫ 2π

0
dα

1− cos(α)(
1 +

2mvdE

~2 L2 (1− cos(α))
)γ ,

(2.35)

quantity value description

∆ 0.4 nm root mean square height of interface roughness

L 1 nm correlation length of roughness

γ 1.5 exponent of power spectrum

x0 — position of interface

Ψ — wave function

E — kinetic energy

mv
x Eq. 2.17 mass of electrons in direction perpendicular to

interface

mv
d Eq. (2.48) Herring-Vogt mass

Since we will consider a double gate MOSFET for most of this work, we
actually have to deal with two interfaces. We assume that the roughness of one
interface is not correlated with the roughness of the other interface and therefore
we may simply add the scattering rates of both interfaces [94].

The root mean square height and correlation length of the roughness are
chosen such that experimentally measured mobilities for an SOI MOSFET with
an ultrathin channel can be reproduced (cf. Sect. 5.1.1). The final values of
∆ = 0.3 nm and L = 1 nm are in the vicinity of the values found in literature [86].

We omit the effect of screening in the surface roughness scattering because
of the reason explained in the following section.

Ionized Impurity Scattering

In MOSFETs, we usually have to deal with ionized impurity scattering due to the
doping. When we dope the semiconductor, we essentially insert foreign atoms
which are usually ionized and populate the conduction band with electrons or
the valence band with holes, depending on the kind of doping. These ionized
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atoms represent Coulomb scattering targets which have to be considered in the
scattering rate of the BE (see e.g. [69]).

Computing the scattering rate with Coulomb targets straightforwardly leads
to divergences, unless the screening by the surrounding electron gas is included.
However, screening represents a hurdle in self-consistent solvers as it couples
each scattering term to the density of carriers and therefore fills up the matrix
of the system of equations a lot more than other scattering terms (cf. Sect. 2.4.6
for the setup of the solver). Since this work is more concerned with a proper self-
consistent description of noise, we will approximate the effect of ionized impurity
scattering using the deformation potential of acoustic elastic phonon scattering.

Let us first note that impurity scattering mainly contributes in the highly
doped contact regions as a reduction of mobility since the channel region is only
lightly doped. However, the highly doped contact regions also have high numbers
of carriers and therefore the distribution function is close to equilibrium. And
as long as the distribution function is close to equilibrium, we can interpret the
mobility reduction of the ionized impurity scattering as a mere global resistance.
Thus, we can effectively increase the deformation potential of the elastic acoustic
phonon scattering of Eq. (2.28) in order to obtain the desired mobility in the
contact regions.

Meanwhile, in the channel, where we will find more complex dynamics, we
can safely ignore ionized impurity scattering due to the low doping. In Sect. 5.2.2
we are going to verify that our assumptions hold.

2.4.3 Boundary Conditions

We want to describe the boundary conditions of the BE as generation and re-
combination (GR) terms relative to a thermal bath of electrons in the contacts.
To this end, we could use Robin boundary conditions with some flux crossing
the devices boundaries at the source and drain contacts. However, this is equiv-
alent to assuming that no flux crosses the boundaries but a singular GR rate
Γ (cf. Eq. (2.12)) is located on the ohmic contacts, i.e. the source and drain
contacts in Fig. 2.1. This GR rate acts as a source and sink of electrons.

For the sake of the argument, let us assume that there exists an additional
subband C for each subband ν, denoting the thermal electrons in the source or
drain, C = S/D, with equilibrium distribution fνeq(yC ,k) as depicted in Fig. 2.10.
Then, we can express the rate of transfer from this thermal bath to the inside
of the device as a scattering rate analogous to Eq. (2.15) only that the rate does
not transition between two subbands ν and ν ′ but between a subband ν and the
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thermal bath of contact C

fνeq(yC ,k)

V C
appl

device

fν(y,k)

Γν(yC ,k)

jν(yC)

Figure 2.10: Illustration of the hypothetical thermal bath representing a
contact C with an applied bias V Cappl and an equilibrium distribution function
fνeq(yC ,k). On the contact resides the GR rate Γν(yC ,k) connecting the
thermal bath with the distribution function fν(y,k) inside the device and
creating a current density jν(yC).

thermal bath band C:

Γν(y,k) = Ω
∑

C=S,D

∫
d2k′

(2π)2

[
(1− fν(y,k, t))γν,C(y;k,k′)fνeq(y,k′)

− (1− fνeq(y,k′))γC,ν(y;k′,k)fν(y,k, t)

]
.

(2.36)

Assuming the transition rate γν,C is constant for all k, we can write it down as

γν,C(y;k,k′) = γC,ν(y;k′,k) =
1

Ω
vGR (2π)2δ(k − k′) δ(y − yC), (2.37)

where yC = yS and yC = yD are the y-coordinates of the source and drain,
respectively. The constant vGR is called the recombination velocity. It is the
velocity of injection and extraction of carriers at the source and the drain which
can be obtained by approximating the corresponding k-dependent rate [29]. The
higher vGR, the lower the resistance of the contact, and vice versa.

Inserting Eq. (2.37) into Eq. (2.36), the GR rate simplifies to

Γν(y,k) = −vGR

(
fν(y,k)− fνeq(y,k)

)
(δ(y − yS) + δ(y − yD)) , (2.38)

which is equivalent to the expression given in Ref. [24].

Contact Current

As is evident from Eq. (2.38), Γ is singular on the contacts and vanishes every-
where else. The distribution function outside the device D vanishes,

fν(y,k, t)
∣∣∣
y/∈D

= 0,
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yC

j = 0

∂j

∂y
=
∫
k Γ

∂j

∂y
= 0

outside of device device

y

j

Figure 2.11: Illustration of the current density at the contact. Outside the
device it vanishes and inside of the device it is constant. Whatever current
flows inside the device needs to be created by the singular GR rate on the
contact at yC .

such that all flux terminates or originates in the singular Γ as depicted in
Fig. 2.11. Naturally, we do not want to exclude the possibility of a current within
the device and therefore the current density needs to be discontinuous – as a
Heaviside step function – where the GR rate Γ is located. Thus the derivative of
the distribution function w.r.t. y is necessarily singular – as a delta-distribution
function – on the contacts.

Integration of the whole BE over an infinitely small interval containing, say,
the source contact position yS, will leave only the singular terms as

0 = lim
`→0

∫ yS+`/2

yS−`/2
dy FBE = lim

`→0

∫ yS+`/2

yS−`/2
dy

[
vνy (k)

∂

∂y
fν(y,k, t)− Γν(y,k)

]

= lim
`→0

vνy (k)


fν(yS − `/2,k, t)︸ ︷︷ ︸

=0

−fν(yS + `/2,k, t)




+ vGR

(
fν(yS,k, t)− fνeq(yS,k)

)

= − vνy (k)fν(yS,k, t) + vGR

(
fν(yS,k, t)− fνeq(yS,k)

)
,

where the distribution function outside the device vanishes.
Integrating this over k-space, we see that the GR rate Γ gives rise to an

electron current

jν(yS, t) = − lim
`→0

∫ yS+`/2

yS−`/2
dy

∫
d2k

(2π)2
Γν(y,k) = vGR(nν(yS, t)− neq) (2.39)

and analogously if the BE were integrated around the drain contact position yD

jν(yD, t) = lim
`→0

∫ yD+`/2

yD−`/2
dy

∫
d2k

(2π)2
Γν(y,k) = − vGR(nν(yD, t)− neq). (2.40)
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The opposite sign in the equation for the drain contact current stems from the
fact that the generation of charge elicits a current flowing from the contact
inwards of the device, which is the negative y-direction as seen from the drain
contact.

Contact Fermi Level

In order to determine the GR rate Γ of Eq. (2.38), we need to know the Fermi
level of the equilibrium electrons in the thermal bath representing the ohmic
source and drain contacts and we need to understand how this Fermi level im-
pacts the electron distribution function within the device. Assuming that the
contacts are made from the same metal, the shift in their Fermi levels due to an
applied bias is given by

E
S/D
F − Eref

F = −qV S/D
appl ,

where E
S/D
F is the Fermi level of the source or drain contact; Eref

F is the Fermi
level of some reference metal contact, usually chosen as the source contact itself;

and V
S/D

appl is the applied bias between the source or drain and the reference
contact.

We want to understand how the Fermi levels of the source and drain contacts
relate to the adjacent highly doped silicon regions within the device. To describe
the behavior of electrons within a semiconductor device, the quasi Fermi level
−qϕn is a useful quantity. It is a chemical potential which gives rise to the
total electron current, i.e. it contains both diffusion and conduction phenomena.
In the equilibrium case, when there is no conduction current flowing through
the source or drain contacts, the quasi Fermi level in the highly doped silicon
adjacent to the contacts will adjust itself to the Fermi level in the contacts.
Once a bias is applied, the quasi Fermi potential and the metal contact can
be different, however, since our silicon regions next to the contacts are highly
doped, we can assume that the carriers are close to equilibrium. Furthermore,
the source and drain contacts are defined to be ohmic which means that the
exchange rate between the metal and the semiconductor is high which in turn
means that metal and semiconductor are in thermodynamic equilibrium. It
follows that the Fermi levels of the contacts are the same as the quasi Fermi
levels in the adjacent highly doped silicon region, even under non-equilibrium
conditions:

ES
F = −qϕn

∣∣∣
y=yS

, ED
F = −qϕn

∣∣∣
y=yD

.

And therefore the applied bias can be expressed in terms of the quasi Fermi
potentials as

ϕn

∣∣∣
y=yS

− ϕref
n = V S

appl, ϕn

∣∣∣
y=yD

− ϕref
n = V D

appl, (2.41)
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where ϕref
n = −Eref

F /q is the quasi Fermi potential corresponding to the Fermi
level of the reference contact.

With the understanding of how the Fermi level impacts the semiconductor
region, we can find an expression for the Fermi level by substituting the metal
region with an infinitely large three-dimensional thermal bath of electrons with
density

n
S/D
3D = N eff

3D exp

(
E

S/D
F − EC

kBT

)
, (2.42)

where V is the electric potential,

EC = −qV − Eref
F (2.43)

is the conduction band energy measured relative to the reference Fermi level,
and

N eff
3D = 3

√
2

(
3
√
mv
xm

v
ym

v
z

~2π
kBT

)3/2

(2.44)

is the effective density of states of silicon in three dimensions. Choosing silicon
for the material of the thermal bath certainly simplifies things because the con-
tact just becomes an extension of the device and therefore we do not have to
consider interface conditions.

Close to the contacts but on the inside of the device, we can express the
electron density with the quasi Fermi potential as

n3D = ni exp

(
V − ϕn
VT

)
(2.45)

and since we treat the contact just as an extension of the silicon region, we
require that the density is continuous and therefore we find with Eqs. (2.42)
and (2.45):

E
S/D
F = kBT log

(
ni

N eff
3D

)
+ EC

∣∣∣
y=yS/D

+ qV
∣∣∣
y=yS/D

− qϕn
∣∣∣
y=yS/D

.

Note that the conduction band energy EC of Eq. (2.43) is constant within the
thermal bath and therefore we chose to evaluate it on the contacts. With
Eq. (2.41) we finally find

E
S/D
F = kBT log

(
ni

N eff
3D

)
− qV S/D

appl . (2.46)
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In the above derivation we neglected the Pauli principle but the same rea-
soning also applies in that case as well. With the Fermi level of Eq. (2.46), we
can finally formulate the equilibrium Fermi-Dirac distribution functions of the
source and drain thermal baths as

fνeq(yS/D,k) =
1

exp

(
Eν(k)+εν(yS/D)+qV

S/D
appl

kBT
− log

(
ni
Neff

3D

))
+ 1

, (2.47)

which completes the definition of the GR rate Γ of Eq. (2.38).

2.4.4 Transformations

We cannot solve the BE of Eq. (2.13) efficiently and numerically stable if we
use a straightforward approach. Instead, we are going to perform a series of
transformations described in the following.

Herring-Vogt Transformation

The dispersion relation of Eq. (2.19) is inconvenient to work with due to the
potentially differing effective masses in y- and z-direction which stem from the
ellipsoidal X-valleys. However, we can transform k-space in order to distort the
ellipsoidal valleys into spherical ones using the Herring-Vogt transformation [95].
In our case, the transformation in a valley v is given by

kHV := T vHV k, with T vHV = diag

(√
mv
d

mv
y

,

√
mv
d

mv
z

)
, mv

d =
√
mv
y m

v
z , (2.48)

where kHV is a 2D vector in the Herring-Vogt transformed k-space.

The kinetic energy can be readily transformed as

Ev(k) = Ev
(

(T vHV)−1 kHV

)
=

~2

2mv
d

|kHV|2 =: EvHV(kHV). (2.49)

Note how EHV has the same mass mv
d irrespective of the direction. Likewise the

group velocity can be transformed as

vv(k) =
1

~
∇kE(k) = ~

(
1/mv

y 0

0 1/mv
z

)
k = T vHV

~
mv
d

kHV = T vHVv
v(kHV)

(2.50)

and the force remains the same, i.e. F ν ≡ F νHV, since it doesn’t depend on
k-space.



50 CHAPTER 2. STATIONARY EQUATIONS

The stationary free streaming operator in the Herring-Vogt transformed k-
space is thus given by

Lv(y,k) = (T vHV)yy

[
1

~
F νHV(y)

∂

∂kHV,y
fνHV(y,kHV) + vvy(kHV)

∂

∂y
fνHV(y,kHV)

]
,

(2.51)

where (T vHV)yy =
√
mv
d/m

v
y and

fν(y,k) = fν
(
y, (T vHV)−1 kHV

)
= fνHV (y,kHV) .

Note that structurally nothing changed in the free streaming term except for
the appearance of the diagonal y-component of the Herring-Vogt transformation
matrix.

The scattering term of Eq. (2.15) also needs to be Herring-Vogt transformed.
The measure d2k/(2π)2 stays invariant, however, the transition rate – in general
– does depend on the shape of the band structure. Nevertheless, since we already
employ significant simplifications to the scattering process, we will further ap-
proximate that we can compute the transition rates as if k-space is Herring-Vogt
transformed:

Sν(y,k) ≈ Sν(y,kHV) (2.52)

Finally, the GR rate Γ of Eq. (2.38) remains invariant under the Herring-Vogt
transformation:

Γν(y,k) = Γν(y,kHV).

In the remainder of this work, all quantities will be given in the Herring-Vogt
transformed k-space, however, we will omit the HV subscript to avoid cluttering
the notation.

Fourier Harmonics Expansion

The BE in its general form of Eq. (2.12) is impervious to numerical brute force
approaches due to its high dimensionality of three spatial dimensions and three
wave vector dimensions. Even after the simplifications leading up to Eq. (2.13)
it is highly inefficient to solve due to the two-dimensional k-space.

To ease the computational burden, we can exploit the fact that in equilib-
rium, the distribution function is radially symmetric in energy space and non-
equilibrium distribution functions can be formulated as corrections to a radially
symmetric function.
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To this end, we are going to express the BE in terms of the kinetic energy
E and the angle φ describing the orientation of k in our two-dimensional k-
space. Thereafter we are going to expand the angle-dependence in a series
of Fourier harmonics, where the zeroth order – which is independent of the
angle – is sufficient to express the exact equilibrium solution. Higher orders are
corrections that become important in non-equilibrium. As it turns out, such
a series converges quickly enough – even far from equilibrium – that we can
truncate the series to make computations feasible.

In the previous section we saw that the dispersion relation in the Herring-
Vogt transformed k-space takes on the simple form of Eq. (2.49). It is thus
strictly monotonically increasing and can be inverted as

kν(E, φ) =

√
2mv

dE

~2

(
cos(φ)
sin(φ)

)
, (2.53)

where φ gives the orientation of k. We can use this inversion to define all quanti-
ties in terms of polar coordinates E and φ, rather than cartesian coordinates ky
and kz. Then each quantity, say X(E, φ), can be expanded in Fourier harmonics
as

X(E, φ) =

∞∑

m=−∞
Xm(E) Ym(φ), (2.54)

where Ym is the m-th Fourier harmonic given by

Ym(φ) = cm cos(mφ+ φm), with cm =

√
1

(1 + δm,0)π
, φm =

{
0, m ≥ 0
π
2 , m < 0

(2.55)

and fulfilling the orthonormality relation

∫ 2π

0
dφ Ym(φ)Yn(φ) = δm,n (2.56)

with the Kronecker delta δm,n. Equation (2.54) can be inverted using the or-
thonormality of Eq. (2.56) which yields

Xm(E) =

∫ 2π

0
dφ X(E, φ)Ym(φ).

In order to switch from a cartesian k-space to the above polar representation,
we also need to transform the measure of the k-space integration as

d2k

(2π)2
=

1

(2π)2
d|k| dφ |k| = dE dφ Zv (2.57)
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where Zv = mv
d/(2π)2~ is the two-dimensional valley-dependent density of states

for a parabolic band structure.
Using all of the above, we can project any quantity X(k) in k-space4 onto

an equienergy circle E and onto a Fourier harmonic m as

∫
d2k

(2π)2
X(k) δ(E − Eν(k)) Ym(φ(k))

=

∫
dE′ dφ ZvX(k(E′, φ)) δ(E − E′) Ym(φ)

=

∫
dφ ZvX(E, φ) Ym(φ)

= ZvXm(E),

where δ is the Dirac-distribution.

The projection of the Herring-Vogt transformed free streaming term of Eq. (2.51)
is more involved. The full treatment is exercised in Ref. [29] and will be omitted
in this work. Nevertheless, we will record the result for the projected free-
streatming term which is given by

Lν(y,E) :=

∫
d2k

(2π)2
Lν(y,k) δ(E − Eν(k)) Ym(φ)

= Zv
∑

m′=m−1,m+1

[(
F ν(y)

∂

∂E
+

∂

∂y

)
aνm,m′(y,E)fνm′(y,E)

− bνm,m′(y,E)fνm′(y,E)

]
,

(2.58)

where

aνm,m′(y,E) := (T vHV)yy (vvy)1(E)

∫
dφ Ym′(φ)Ym(φ)Y1(φ), (2.59)

bνm,m′(y,E) := (T vHV)yy F
ν(y)

m
√
π

~kν(E)

∫
dφ Ym′(φ)Y−m(φ)Y−1(φ), (2.60)

with the first Fourier harmonic coefficient of the group velocity (vvy)1(E) defined
by

vvy(E, φ) =
~
mv
d

ky(E, φ) =

√
2πE

mv
d

Y1(φ) =: (vvy)1(E) Y1(φ). (2.61)

4Note that X(k) is technically another function than X(E, φ) but we nevertheless use the
same symbol as the reader should easily be able to discern these based upon the function
arguments.
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The integral over the three Fourier harmonics can be evaluated using [29]
∫ 2π

0
dφ Ym(φ)Yn(φ)Y`(φ) =

π

2
cmcnc`

∑

σ,τ∈{1,−1}
δ0,m+σn+τ` cos(φm + σφn + τφ`).

(2.62)

Note that this means that the only non-zero contributions to the sum over all the
harmonics in the free streaming term comes from the terms m′ ∈ {m−1,m+1}
since in all other cases the integrals over the Fourier harmonics of Eqs. (2.59)
and (2.60) vanish.

Likewise, we can project the scattering term of Eq. (2.15). Usually we would
have to expand the transition rates in Fourier harmonics as well but the transi-
tion rates discussed in Sect. 2.4.2 neither depend on the angle of the initial state
nor on the angle of the final state, i.e.

Sν,ν
′

η (y;k,k′) ≡ Sν,ν′η (y; k, k′),

where |k| = k and |k′| = k′. Therefore, the projection reads

Sνm(y,E) :=

∫
d2k

(2π)2
Sν(y,k) δ(E − Eν(k)) Ym(φ)

= Ω
∑

η,ν′

∫
d2k

(2π)2

d2k′

(2π)2

[
(1− fν(y,k)) Sν,ν

′
η (y; k, k′) fν

′
(y,k′)

− (1− fν′(y,k′)) Sν′,νη (y; k′, k) fν(y,k)

]
δ(E − Eν(k)) Ym(φ)

=
Ω

Y0

∑

η,ν′
ZvZv

′
∫
dE′
[(

δm,0
Y0
− fνm(y,E)

)
Sν,ν

′
η (y;E,E′) fν

′
0 (y,E′)

−
(

1

Y0
− fν′0 (y,E′)

)
Sν
′,ν
η (y;E′, E) fνm(y,E)

]
, (2.63)

where we used the orthonormality of Fourier harmonics of Eq. (2.56) extensively.
Note how the angular independence of the transition rate immediately leads to
a scattering term where the initial state in the m-th harmonic can only connect
to final states in the zeroth harmonic, i.e. states that are radially symmetric.

The projection of the contact GR rate of Eq. (2.38) is straightforward and
yields

Γνm(y,E) :=

∫
d2k

(2π)2
Γν(y,k) δ(E − Eν(k)) Ym(φ)

= − vGRZ
v

(
fνm(y,E)− δm,0

Y0
fνeq(y,E)

)
(δ(y − yS) + δ(y − yD)) .

(2.64)
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With Eqs. (2.58), (2.63), and (2.64), the total BE projected onto Fourier
harmonics and equienergy circles is given by

0 =
[
FBE

]ν
m

(y,E) = Lνm(y,E)− Sνm(y,E)− Γνm(y,E).

H-Transformation

The H-transformation [18] has been widely employed to stabilize the BE in
deterministic solvers. Fundamentally, it is a simple transformation of the BE
from the kinetic energy E to the total energy H, which – in our case – is defined
as the sum of the subband energy and the kinetic energy

Hν(y,E) = εν(y) + E. (2.65)

Therefore the transformation is position and subband dependent and reads

E −→ εν(y) + E = H

The advantage of this representation reveals itself in the free streaming term.
Consider a non-interacting carrier whose transport is described by the free
streaming term. While the potential energy and therefore the kinetic energy
of the carrier might change, the total energy is conserved. Thus, in the ballis-
tic regime, we can describe the transport of the carrier with a single value of
H. Effectively, we decouple the free streaming term in energy space, making it
numerically stable. Even in the case where scattering is involved, the numerical
properties of the BE will be better with the H-transformation. Particularly in
our case, i.e. in nanoscale devices, where transport is close to ballistic.

To see this, we are going to perform the H-transformation on the BE as was
done in Ref. [29]. The free streaming term of Eq. (2.58) contains two derivatives
which behave under H-transformation as

∂

∂E
−→ ∂

∂H
,

∂

∂y
−→ ∂

∂y
+
∂εν(y)

∂y

∂

∂H
.

If we use Eq. (2.14) for the force and apply theH-transformation to the projected
free streaming term of Eq. (2.58), we find

Lνm(y,E) −→ Lνm(y,H) = Zv
∑

m′=m−1,m+1

[
∂

∂y

(
aνm,m′(y,H)fνm′(y,H)

)

− bνm,m′(y,H)fνm′(y,H)

]
,

(2.66)

where the term with the energy derivative has conveniently cancelled. Note that
– technically – functions of H are different from functions of E but we reused
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the symbols to avoid cluttering the notation, since the reader should be able to
discern the functions by their arguments.

The H-transformation of the scattering term of Eq. (2.63) is trivial and yields

Sνm(y,E) −→ Sνm(y,H) =
Ω

Y0

∑

η,ν′
ZvZv

′
∫ ∞

εν(y)
dH ′

×
[(

δm,0
Y0
− fνm(y,H)

)
Sν,ν

′
η (y;H,H ′) fν

′
0 (y,H ′)

−
(

1

Y0
− fν′0 (y,H ′)

)
Sν
′,ν
η (y;H ′, H) fνm(y,H)

]
.

However, one aspect to keep in mind about the H-transformation – and which
will be of significance later in this work – is that the support of integrals in
H-space in a subband ν at position y is defined as

H ∈ [εν(y),∞). (2.67)

Obviously the kinetic energy must be zero or positive and therefore carriers can
only occupy states on or above the subband edge.

Using the common representation of transition rates defined by Eq. (2.21),
we can express the scattering term as

Sνm(y,H) =
1

Y0

∑

η,σ,ν′
ZvZv

′

×
[(

δm,0
Y0
− fνm(y,H)

)
cν,ν

′
η (y;H,H + σ~ωη)fν

′
0 (y,H + σ~ωη)

−
(

1

Y0
− fν′0 (y,H − σ~ωη)

)
cν
′,ν
η (y;H − σ~ωη, H)fνm(y,H)

]
,

(2.68)

where the transition rate coefficients c are given by Eqs. (2.28), (2.31), and (2.35).
Note that for elastic processes we assume ~ωη = 0 and σ = 0. For the inelastic
inter-valley phonon scattering, we have ~ωη given by Tab. 2.1 and σ = ±1.

Finally, the H-transformation of the contact GR rate of Eq. (2.64) is straight-
forward and reads

Γνm(y,E) −→ Γνm(y,H) = − vGRZ
v

(
fνm(y,H)− δm,0

Y0
feq(y,H)

)

×
(
δ(y − yS) + δ(y − yD)

) (2.69)

with the equilibrium distribution function of Eq. (2.47) transformed into H-
space as

feq(yS/D, H) =
1

exp

(
H+qV

S/D
appl

kBT
− log

(
ni
Neff

3D

))
+ 1

. (2.70)
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Thus, with Eqs. (2.66), (2.68), and (2.68), the total H-transformed BE reads

0 =
[
FBE

]ν
m

(y,H) = Lνm(y,H)− Sνm(y,H)− Γνm(y,H). (2.71)

2.4.5 Discretization

To complete the discussion of the BE, we will discuss how to properly discretize
the BE. The whole treatment has been performed in Ref. [29], however, not in
as much detail as here where we will attempt to remove any ambiguities and
sources for errors.

The discretization of the BE is based on the finite volume method – or
box-integration method. We start out with the Herring-Vogt transformed, H-
transformed, and projected BE of Eq. (2.71). We define a direct spatial grid
and an adjoint spatial grid in transport direction. Quantities on the direct grid
points represent densities while quantities on the adjoint grid represent fluxes.
Furthermore, we use a constant interpolation scheme where each quantity is
considered constant in the box surrounding the grid point it is defined on.

Grid

Let us define the set of grid points in transport direction

yi ∈ {y1, y2, . . . , yNy}, (2.72)

which may be non-equidistant, and a set of grid points in H-space

Hj ∈ {H0, H1, H2, . . . ,HNH , HNH+1}, (2.73)

which we will require to be equidistant and which contains dummy grid points
H0 and HNH+1 for later convenience. Recall that H is the total energy as defined
by Eq. (2.65). The grid looks as in Fig. 2.12, where the subband energy εν(y) of
some subband ν has been schematically drawn. Below the subband energy εν(y)
no electron states can exist and therefore all transport happens at or above the
subband energy.

It is important to point out that the H-grid needs to be constant throughout
the whole computation. In fact, the whole idea of the H-grid is to express all
energies w.r.t. a constant grid and therefore it needs to be globally defined and
cannot change between iterations.

Figure 2.12 also shows the grid points of the adjoint spatial grid as small
crosses in between the direct grid points. We will use the following notation to
reference adjoint grid points:

yi+ =
yi+1 + yi

2
, i ∈ {1, . . . , Ny − 1},
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yi−2 yi−1 yi yi+1 yi+2

Hj−2

Hj−1

Hj

Hj+1

Hj+2

•
•

• •
•εν(y)

Forbidden States

∆Hν
j (yi)

∆Hν
j+1(yi)

∆Hν
j+2(yi)

∆yi+1∆yi∆yi−1

∆yi+∆yi−

Figure 2.12: Illustration of the tensor grid of the BE comprising the trans-
port direction and H-space. Adjoint grid points in the transport direction
are marked with crosses. Boxes in y-space for direct and adjoint grids are
shown surrounding the direct and adjoint grid points, respectively. Since
there is no adjoint grid in H-space, there are only boxes surrounding the di-
rect grid points. Note that there are no boxes in H-space below the subband
energy and that the lowest box is truncated by the subband energy.

yi− =
yi + yi−1

2
, i ∈ {2, . . . , Ny},

where the boundary points are defined as

y1− = y1, yNy+ = yNy .

Obviously, we have duplicate definitions since, e.g., yi+ = y(i+1)−. Nevertheless,
this notation will prove convenient later on.

For the box-integration, we define boxes in transport direction as illustrated
in Fig. 2.12. Around direct grid points, the boxes are given by

∆yi = yi+ − yi−, i ∈ {1, . . . , Ny} (2.74)

and around adjoint grid points by

∆yi+ = yi+1 − yi, i ∈ {1, . . . , Ny − 1},
∆yi− = yi − yi−1, i ∈ {2, . . . , Ny}.

The boxes of the H-grid are more complicated to express due to the subband
energy as shown in Fig. 2.12. As implied by Eq. (2.67), the support of H-space
integrations is limited by the subband energy which must be reflected in the
boxes. Hence, the H-box is either zero if it is completely below the subband
energy, or it is truncated by the subband energy if the upper limit is above



58 CHAPTER 2. STATIONARY EQUATIONS

the subband energy and the lower limit is below, or the box is complete if the
subband energy is below the lower limit. To quantify, the H-box is given by

∆Hν(y,Hj) =





0, if εν(y) ≥ Hj+,

Hj+ − εν(y), if Hj+ > εν(y) > Hj−,

Hj+ −Hj−, else.

(2.75)

Here, the intermediary H-grid points are defined analogously to the adjoint
spatial points as

Hj+ =
Hj+1 +Hj

2
, j ∈ {1, . . . , NH − 1}

Hj− =
Hj +Hj−1

2
, j ∈ {2, . . . , NH},

H1− =
H1 +H0

2
, HNH+ =

HNH+1 +HNH

2
.

Note that the definition of the H-box of Eq. (2.75) does not suggest whether
the H-box is on a direct or adjoint grid point in transport direction. This is
because we need to be able to evaluate both kinds of boxes. If the box is on a
direct grid point yi the reference subband energy is given by εν(yi). However, if
we need to evaluate the box on an adjoint point yi+ the reference energy must
be given by the average,

εν(yi+) =
εν(yi+1) + εν(yi)

2
, (2.76)

since we only solved the SE on direct grid points.
Another idea important to the H-space discretization is that we can trun-

cate the H-grid at high energy. Technically energy states stretch all the way
to infinity, however, it becomes increasingly unlikely to find carriers occupying
states of higher energies. In fact, the probability to find carriers at high energies
decreases exponentially (cf. the Fermi-Dirac distribution function of Eq. (2.47)).
Therefore we can argue that at some energy the occupation is so low that its
contribution to observables drops below the numerical precision of our com-
putation and can be safely neglected. Bear in mind that this means that the
distribution function vanishes and not that the energy grid is limited. Hence,
the box in H-space surrounding the uppermost grid point HNH is a complete
box extending up to HNH+, which is different from the way the boxes on the
boundaries of y-space work.

Now let us take a look at which quantities constitute densities and which
ones are fluxes and how they are associated with the direct and adjoint grids
in y-space. First off, any quantity depending on k-space should be expanded
into Fourier harmonics as in Eq. (2.54). Our choice of the Fourier harmonics
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of Eq. (2.55) yields that under inversion, i.e. k → −k, the even harmonics are
invariant – like densities – while the odd harmonics will switch their signs – like
fluxes. A flux describes a change in density from one grid point to another and
therefore, we are going to define fluxes on the adjoint grid points. Consequently
any quantity with an odd Fourier harmonic index is defined on the adjoint grid
points, while the even ones are defined on direct grid points.

As a last remark, it might seem surprising that adjoint grid points do not take
into consideration energy space, i.e. adjoint grid points are simply in between
direct y-grid points but at the same energy. The reason for this is that the H-
transformation eliminates the derivative in energy space as shown in Sect. 2.4.4.
Therefore, it is not necessary to describe fluxes in H-space and there’s no need
for an adjoint grid in H-space.

Free Streaming Term

The structure of the discretized free streaming term needs to be chosen carefully
in order to find a numerically sound representation. We will use the maximum
entropy dissipation scheme, which requires us to use a certain form for the free
streaming term. The full treatment of this is beyond the scope of this work and
therefore we refer the reader to Refs. [24, 29, 96, 97, 98, 99] for more details.
Here, we will only present the results thereof.

We start out from the free streaming term of Eq. (2.66) to find a suitable
expression on the grid points yi and Hj in the subband ν and for the even
Fourier harmonic m. To this end, let us write down the expression for the
box-integration

L̄νm(yi, Hj) :=

∫

∆Hν(yi,Hj)
dH

∫ yi+

yi−
dy Lνm(y,H)

∣∣∣∣
m even

,

where
∫

∆Hν(yi,Hj)
denotes the integral over the appropriate box surrounding the

grid point Hj as given by Eq. (2.75). As previously discussed, quantities on
direct grid points can only be coefficients of even Fourier harmonics. Thus it
is understood that L̄νm(yi, Hj) is only defined for even harmonics m since it is
evaluated on the direct grid point yi.
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The resulting expression has been derived in [29] and is given by

L̄νm(yi, Hj) = Zν
∑

m′=m±1

[
fνm′(yi+, Hj)

∫

∆Hν(yi+,Hj)
dH am,m′(yi+, H)

− fνm′(yi−, Hj)

∫

∆Hν(yi−,Hj)
dH am,m′(yi−, H)

− 1

2
fνm′(yi+, Hj)∆yi+

∫

∆Hν(yi+,Hj)
dH bm,m′(yi+, H)

− 1

2
fνm′(yi−, Hj)∆yi−

∫

∆Hν(yi−,Hj)
dH bm,m′(yi−, H)

]∣∣∣∣
m even

,

(2.77)

where it becomes obvious that the free streaming term on the direct grid point yi
with even harmonic m, only couples to distribution functions on the surrounding
adjoint grid points yi± with odd harmonics m′ = m± 1.

There is a difficulty with the remaining integrals over the coefficients a and b
of Eq. (2.77) that needs to be addressed before we proceed. Note that we cannot
simply assume that the integral over H is the center value of the integrand times
the width of the H-box since it would lead to problems in the stability and
quality of the solution. Instead, we need to perform these integrals analytically
and with special care for the integration boundaries.

The free streaming term describes how free carriers propagate from one grid
point to another. Apart from constants and the distribution function, the co-
efficients a and b govern the rate of transfer from one grid point in transport
direction to the next one. In particular, if certain energy ranges are forbidden
due to the subband energy, it will be reflected in the coefficients a and b. There-
fore, it is of great importance to determine the discretization of these coefficients
correctly.

To understand how the box-integration works for the coefficients, let us take
a look at Fig. 2.13. It depicts how a transition from the grid point yi to the
grid point yi+1 according to the free streaming term works. Remember, that the
free streaming term only describes free carriers which move along constant total
energy lines, i.e. at constant H or horizontally in Fig. 2.13. In a device, we are
confronted with the case that the subband energy changes from one grid point
to the next one. Therefore states at certain energies might exist at position yi
but might be below the subband energy at the grid point yi+1.

Obviously, such transitions cannot happen and therefore their rate is zero
which means they have to be excluded from the box-integration in H-space.
To see how this can be accommodated in our discretization, let us set up the
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yi yi+ yi+1

Forbidden

Allowed

•
•

εν(y)

∆Hν
j (yi)

∆Hν
j+1(yi)

∆Hν
j (yi+1)

∆Hν
j+1(yi+1)

Figure 2.13: Allowed and forbidden transitions of the coefficients
am,m′(yi+, H) and bm,m′(yi+, H).

integral over the coefficient a of Eq. (2.59) which can be expressed as follows

Aνm,m′(yi+, Hj) :=

∫

∆Hν(yi,Hj)
dH am,m′(yi+, H)

= (T vHV)yy

∫
dφ Ym′(φ)Ym(φ)Y1(φ)

×
∫

∆Hν(yi+,Hj)
dH (vνy )1(yi+, H),

where the group velocity has been transformed to H-space, thereby making it
position dependent. Here the quantity of interest is the integral over the group
velocity of Eq. (2.61). In H-space the group velocity reads

(vνy )1(yi+, H) =

√
2π(H − εν(yi+))

mv
d

and the subband energy on an adjoint grid point is simply given by the arithmetic
mean of the surrounding direct grid points as given in Eq. (2.76).

Taking into account that carriers at energies below the subband energy of
either surrounding grid point cannot propagate, we find that the integral over
the group velocity reads

∫

∆Hν(yi+,Hj)
dH (vνy )1(yi+, H)
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=





√
2π
mvd

2
3 (H − εν(yi+))

3
2

∣∣∣∣
Hj+

H=Hj−

, if Hj− ≥ max(εν)i+,

√
2π
mvd

2
3 (H − εν(yi+))

3
2

∣∣∣∣
Hj+

H=max(εν)i+

, if Hj+ > max(εν)i+ > Hj−,

0, else,

(2.78)

with

max(εν)i+ := max(εν(yi), ε
ν(yi+1)).

Note that even if the H-boxes are measured w.r.t. the availability of states on
the surrounding grid points, the velocity itself is measured w.r.t. the distance to
the subband energy εν(yi+) on the adjoint grid point.

Completely analogous, we can obtain the H-box integral over the coefficient
b of Eq. (2.60) given by

Bν
m,m′(yi+, Hj) :=

∫

∆Hν(yi+,Hj)
dH bm,m′(yi+, H)

= (T vHV)yy F
ν(yi+)

m
√
π

~

∫
dφ Ym′(φ)Y−m(φ)Y−1(φ)

×
∫

∆Hν(yi+,Hj)

dH

kν(yi+, H)

where the discretized force of Eq. (2.14) is simply given by the finite difference

F ν(yi+) = −ε
ν(yi+1)− εν(yi)

∆yi+

and the magnitude of the wave vector of Eq. (2.53) transformed into H-space is
given by

kν(yi+, H) =

√
2mv

d(H − εν(yi+))

~2

and therefore the H-box integration reads
∫

∆Hν(yi+,Hj)
dH

dH

kν(yi+, H)

=





√
2~2

mvd
(H − εν(yi+))

1
2

∣∣∣∣
Hj+

H=Hj−

, if Hj− ≥ max(εν)i+,

√
2~2

mvd
(H − εν(yi+))

1
2

∣∣∣∣
Hj+

H=max(εν)i+

, if Hj+ > max(εν)i+ > Hj−,

0, else.
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Let us now turn to the free streaming term on the adjoint grid point. It
might be tempting to simply reuse the free streaming term of Eq. (2.66) and
evaluate it on the adjoint grid point but this approach brings along inconsisten-
cies. Reference [29] points out that we need to use an equivalent adjoint form
of the free streaming term projected onto odd Fourier harmonics. It can can be
derived with the continuum relation

∂

∂y
aνm,m′(y,H) = bm,m′(y,H) + bm′,m(y,H),

which can be applied to Eq. (2.66) to obtain

(Lad)νm(y,H) = Zv
∑

m′=m−1,m+1

[
aνm,m′(y,H)

∂

∂y
fνm′(y,H)

+ bνm′,m(y,H)fνm′(y,H)

]
.

(2.79)

In the continuum Eqs. (2.66) and (2.79) are equivalent, however, only the adjoint
form of Eq. (2.79) will yield a discretization in accordance with the maximum
entropy dissipation scheme. This is important as free – or non-interacting –
carriers as described by the free streaming term cannot change the entropy and
hence this should also be reflected in the discretized system.

Applying the box-integration yields the expression [29]

L̄νm(yi+, Hj) :=

∫

∆Hν(yi,Hj)
dH

∫ yi+1

yi

dy (Lad)νm(y,H)

∣∣∣∣
m odd

= Zν
∑

m′=m±1

[
Am,m′(yi+, Hj) (fνm′(yi+1, Hj)− fνm′(yi, Hj))

+
1

2
Bm′,m(yi+, Hj) (fνm′(yi+1, Hj) + fνm′(yi, Hj)) ∆yi+

]∣∣∣∣
m odd

,

(2.80)

where it is understood that m is odd on the adjoint grid point.

Scattering Term

The discretization of the scattering term is mostly straightforward but there
are still some pitfalls of which to be wary of. First of all, we are going to
consider only energy transfers that are multiples of our H-grid spacing. This
is not a necessary simplification but one that will simplify the discretization of
the scattering term while only minorly impacting scattering rates when the H-
grid is chosen fine enough. Hence, typical transitions between two energy states
appear as depicted by Fig. 2.14.
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Figure 2.14: Scattering transition between the H-grid points Hj and Hk with an energy transfer
~ωη of a scattering process η which is mapped to a multiple of the grid spacing. A: Subband
energy is below the lower energy state. B: Subband energy truncates the lower end of the box
leading to a reduced box size.

You can see that the mapped phonon energies in Fig. 2.14A naturally transfer
one H-grid box into another. In Fig. 2.14B we visualized the case when the
lower box is truncated by the subband energy. Remember that states below the
subband energy are not accessible to carriers, therefore we cannot integrate over
these energy states. In that case, only a subset of the box can be considered
during the box-integration. Thus, the size of the box for a scattering process
with energy transfer ~ω from the energy Hj to Hj + ~ω is given by

min(∆Hν(y,Hj),∆H
ν′(y,Hj + ~ω)),

with the H-boxes defined by Eq. (2.75).

It follows immediately that the box-integrated scattering integral of Eq. (2.68)
on a direct grid point with even harmonic m is given by

S̄νm(yi,Hj) =

∫ Hj+

Hj−
dH

∫ yi+

yi−
dy Sνm(y,H)

∣∣∣∣
m even

=
1

Y0

∑

σ,η,ν′
ZvZv

′

×
[(

δm,0
Y0
− fνm(yi, Hj)

)
cν,ν

′
η (yi;Hj , Hj + σ~ωη)fν

′
0 (yi, Hj + σ~ωη)

×min(∆Hν(yi, Hj),∆H
ν′(yi, Hj + σ~ωη))
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−
(

1

Y0
− fν′0 (yi, Hj − σ~ωη)

)
cν
′,ν
η (yi;Hj − σ~ωη, Hj)f

ν
m(yi, Hj)

×min(∆Hν(yi, Hj),∆H
ν′(yi, Hj − σ~ωη))

]
∆yi

∣∣∣∣
m even

. (2.81)

Likewise, on the adjoint grid and with an odd harmonic m, we obtain

S̄νm(yi+, Hj) =

∫ Hj+

Hj−
dH

∫ yi+1

yi

dy Sνm(y,H)

∣∣∣∣
m odd

=
1

Y0

∑

σ,η,ν′
ZvZv

′

×
[
− 1

2
fνm(yi+, Hj)

(
cν,ν

′
η (yi;Hj , Hj + σ~ωη)fν

′
0 (yi, Hj + σ~ωη)

+ cν,ν
′

η (yi+1;Hj , Hj + σ~ωη)fν
′

0 (yi+1, Hj + σ~ωη)
)

×min(∆Hν(yi+, Hj),∆H
ν′(yi+, Hj + σ~ωη))

− 1

Y0

1

2

(
cν
′,ν
η (yi;Hj − σ~ωη, Hj)

+ cν
′,ν
η (yi+1;Hj − σ~ωη, Hj)

)
fνm(yi+, Hj)

×min(∆Hν(yi+, Hj),∆H
ν′(yi+, Hj − σ~ωη))

+
1

2

(
fν
′

0 (yi, Hj − σ~ωη)cν
′,ν
η (yi;Hj − σ~ωη, Hj)

+ fν
′

0 (yi+1, Hj − σ~ωη)cν
′,ν
η (yi+1;Hj − σ~ωη, Hj)

)
fνm(yi+, Hj)

×min(∆Hν(yi+, Hj),∆H
ν′(yi+, Hj − σ~ωη))

]
∆yi+

∣∣∣∣
m odd

.

(2.82)

When trying to discretize the scattering term, we run into a possible ambi-
guity in the implementation concerning the domains of definition of quantities
relating to even and odd harmonics. Fourier components with even harmonics
are defined on direct grid points, while Fourier components with odd harmonics
are defined on the adjoint grid. Keeping this in mind, the integration over the
spatial grid behaves as follows: Consider a product of some functions dn on the
direct grid and some functions am on the adjoint grid. Then the integral over a
box surrounding a direct grid point yi needs to be computed as
∫ i+

i−
dy

(∏

n

dn(y)

)(∏

m

am(y)

)

= ∆yi

(∏

n

dn(yi)

) ∏
m am(yi+) +

∏
m am(yi−)

2
.



66 CHAPTER 2. STATIONARY EQUATIONS

If we were not interested in the noise in the device, we might also average all
quantities individually and then multiply them together. However, anticipating
the calculation of the power spectral density (cf. Sect. 4.6.3) in the device and
the verification through the Nyquist theorem (cf. Sect. 5.4.2), we need to keep
in mind that the averaging scheme needs to be consistent, which cannot be
guaranteed unless we use proper box-integration.

Boundary Conditions

The boundary GR term of Eq. (2.69) can only exist on the direct grid points on
the contacts due to the delta-distributions. Therefore we find

Γ̄νm(yi, Hj) =

∫ Hj+

Hj−
dH

∫ yi+

yi−
dy Γνm(y,H)

∣∣∣∣
m even

= − vGR

(
fν(yi, Hj)− fνeq(yi, Hj)

) (
δi,1 + δi,Ny

)
∆Hν(yi, Hj),

(2.83)

where the Kronecker-deltas assure that the grid point i is either the source
contact grid point y1 = yS or the drain contact grid point yNy = yD. Note
that the box-integration effectively transforms Γ from a singular GR rate on the
contacts – equivalent to a boundary condition – to a volume GR rate Γ̄ defined
in the volumes ∆y1 and ∆yNy .

The box-integrated GR rate vanishes on adjoint grid points:

Γ̄νm(yi+, Hj) =

∫ Hj+

Hj−
dH

∫ yi+1

yi

dy Γνm(y,H)

∣∣∣∣
m odd

= 0.

2.4.6 Solution

We applied the Herring-Vogt transformation to the BE, then we projected it
onto Fourier harmonics and equienergy surfaces, and subsequently used the box-
integration to discretize it. With the resulting free streaming term of Eqs. (2.77)
and (2.80), the scattering term of Eqs. (2.81) and (2.82), and the boundary term
of Eq. (2.83), we can express the even harmonics of the BE as

0 =
[
F̄BE

]ν
m

(yi, Hj)
∣∣∣
m even

= L̄νm(yi, Hj)− S̄νm(yi, Hj)− Γ̄νm(yi, Hj)
∣∣∣
m even

(2.84)

and the odd harmonics as

0 =
[
F̄BE

]ν
m

(yi+, Hj)
∣∣∣
m odd

= L̄νm(yi+, Hj)− S̄νm(yi+, Hj)
∣∣∣
m odd

. (2.85)

These equations constitute a set of equations which can be solved to obtain
the distribution functions fνm(yi, Hj)

∣∣
m even

and fνm(yi+, Hj)
∣∣
m odd

for a set of
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subbands and valleys ν = (v, s), a set of harmonics m, a set of direct spatial
grid points yi and their associated adjoint grid points yi+, as well as a set of
total energies Hj .

In order to streamline the notation, let us define an aggregate index

α :=

{
(ν, yi, Hj ,m), m even,

(ν, yi+, Hj ,m), m odd,
(2.86)

which runs over all subbands in all valleys ν, all energy grid points Hj , all
harmonics m, and all direct grid points yi in the case of an even harmonic or all
adjoint grid points yi+ in the case of an odd harmonic. Then, the discretized
BE can be expressed as

FBE
α :=

{[
F̄BE

]ν
m

(yi, Hj), m even,[
F̄BE

]ν
m

(yi+, Hj), m odd.
(2.87)

The non-linear system of equations FBE
α = 0 is directly solvable with the

iterative Newton-Raphson approach, i.e. we set some kind of reasonable starting
condition for fα – e.g. the equilibrium distribution function – and then solve
the system of equations of the Newton-Raphson approach given by

∑

β

∂FBE
α

∂fβ
δfβ = −FBE

α , (2.88)

where β is an aggregate index like α. Thereafter we update the distribution
function as

fα −→ fα + δfα (2.89)

and return to Eq. (2.88) for the next iteration. Although solving Eq. (2.88) di-
rectly is possible, it is inefficient since we can still achieve a significant reduction
in the size of the linear system by considering degeneracies and the coupling of
even and odd harmonics of the BE.

Degeneracy

Intuitively, it is obvious that states which cannot be distinguished need not
be accounted for separately. In the case of the BE of this work, we cannot
distinguish between spin up and spin down electrons. A spin up electron will
remain a spin up electron and likewise a spin down electron will remain a spin
down electron, since neither the free streaming term nor the scattering term are
able to flip it. Furthermore, the GR term generates and recombines electrons
of both spins equally. Therefore we may compute the distribution function for,
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say, spin up electrons and multiply the resulting observables, like densities and
currents, with a factor of two.

By omitting a spin index, we have already implicitly assumed that the spin
is a degenerate quantum number but in principle we could have exercised all
derivations of the present chapter for, say, spin up electrons and would have
found that the very same equations also hold for spin down electrons.

A case where it is a bit more difficult to follow how degeneracy works is when
we consider the valley degeneracy of silicon. Recall that the band structure of
silicon in k-space, depicted in Fig. 2.6, has two valleys along each axis where it is
not distinguishable whether an electron is in the valley on the positive side of the
axis or on the negative side. In both cases the dispersion relations are identical
and in both cases there are identical intra- and inter-valley scattering processes
with identical rates. Therefore we may conclude that each pair of valleys on one
of the axes of k-space is degenerate. However, care must be taken with how to
reduce the BE in that case. We cannot simply remove the equations w.r.t. one
of the degenerate valleys from the system of equations since they are coupled to
each other by the inter-valley scattering.

To see how we can reduce the size of the system of equations in that case,
let us consider the general case with the following terminology: We will refer to
an individual state as a true state. If a set of true states are indistinguishable in
terms of their description by the BE, we call these states a degenerate group. A
single true state, which is part of a degenerate group, will be called a degenerate
state.

Assume we have a BE with m degenerate groups, where the i-th group
consists of a set of µi true states. Then we can express Eq. (2.88) as




LS,1 S12 · · · · · · S1m

S21 LS,2 · · · · · · S2m

...
. . .

...
...

. . . Sm−1,m

Sm1 · · · · · · Sm,m−1 LS,m




(
δf
)

= −
(
FBE

)
, (2.90)

where the submatrices LS,i contain µi degenerate states and possibly balanced
scattering process in between the degenerate states of the group. They can be
further split up into the subspaces of the true states as

LS,i =




Li si · · · si

si
. . .

...
...

. . . si

si · · · si Li



,
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where the µi free streaming terms Li on the main diagonal and the scattering
rates si in between the true states are necessarily identical to each other since
the states are part of a degenerate group. The submatrices Sij are scattering
processes in between the true states of different degenerate groups. However,
since the true states of a degenerate group are indistinguishable, the scattering
submatrices can be expressed with the same scattering rates in each of the true
state subspaces as

Sij =



sij · · · sij

...
. . .

...
sij · · · sij


 ,

where Sij is a µi × µj-matrix and sij is the scattering submatrix in between a
true state of the degenerate group i and a true state of the degenerate group j.

Now we can also split up the distribution function and the r.h.s. of Eq. (2.90)
into the m subspaces as

(
δf
)

=
((
δf
)

1

(
δf
)

2
· · ·

(
δf
)
m

)t
,

(
FBE

)
=
((
FBE

)
1

(
FBE

)
2
· · ·

(
FBE

)
m

)t
.

Since the states contained in a degenerate group are indistinguishable, the dis-
tribution functions and the r.h.s. of the BE must be indistinguishable for each
of the true states of a degenerate group, i.e.

(
δf
)
i

=
(
δfi δfi · · · δfi

)t
,

(
FBE

)
i

=
(
FBE
i FBE

i · · · FBE
i

)t
.

Note that both δfi and FBE
i are still vectors in the subspace of a true state.

Then, we can express the BE for the true states of the i-th degenerate group
of Eq. (2.90) as

−
(
FBE
α

)
i

= LS,i
(
δf
)
i
+

m∑

j=1
j 6=i

Sij (δf)j

=



Li δfi + (µi − 1) si δfi

...
Li δfi + (µi − 1) si δfi


+

m∑

j=1
j 6=i



µj s

ij δfj
...

µj s
ij δfj


 ,

where we obtain µi subspaces containing identical equations. Therefore, we may
simply use one of each of the equations of a degenerate group and reduce the
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size of the degenerate BE of Eq. (2.90) by the amount of degeneracy contained
in the equation:




L1 + (µ1 − 1) s1 µ2 s
12 · · · · · · µm s

1m

µ1s
21 L2 + (µ2 − 1) s2 · · · · · · µm s

2m

...
. . .

...
...

. . . µm s
m−1,m

µ1 s
m1 · · · · · · µm−1 s

m,m−1 Lm + (µm − 1) sm




×




δf1

δf2
...

δfm


 = −




FBE
1

FBE
2
...

FBE
m


 . (2.91)

Equation (2.91) gives a very simple prescription to treat the spin degeneracy
of the BE. We have one degenerate group of spins, m = 1, comprising the two
true states of spin up and spin down, µ1 = 2. We do not have any scattering rates
which can flip the spin, therefore s1 = 0. From Eq. (2.91) it follows immediately
that it is sufficient to calculate the BE of a single spin state, completely ignoring
the other spin state since its BE is identical and therefore its solution is identical.
Furthermore, any observable that we derive from the distribution function which
depends on both spin states, can be computed by replacing one of the spin states
with the other one. Usually this means that the observable can be computed
with one spin direction and then multiplied by a factor of two.

Treatment of the valley degeneracy is not as straightforward due to the
inter-valley scattering involved. Instead of the six X-valleys, we only want to
consider three X-valleys – one per axis in 3D k-space. That means we have
three degenerate groups, m = 3, each containing two valleys, µ1 = µ2 = µ3 = 2.

Within a degenerate group, the g-type inter-valley phonon scattering can
occur, i.e. si is the discretized scattering term of the g-type scattering for the
i-th degenerate group. Now, Eq. (2.91) tells us that we can simply consider the
g-type scattering term as if it would scatter from one of the true states into the
same true state with an additional factor of (µi − 1) = 1.

Electrons can scatter in between the degenerate groups through the f -type
inter-valley scattering. Thus we can identify the scattering term sij with the
discretized f -type scattering from a single true state in the original degenerate
group i, to a single true state in the final degenerate group j. Then, Eq. (2.91)
tells us that we can compute the BE using only one true state per degenerate
group, if we multiply the scattering term sij with a factor of µj = 2. Figure 2.15
illustrates the scattering processes and their associated multiplicities if only one
true state per degenerate group is considered.

In the remainder of this work, we will refer to the number of true states in
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Figure 2.15: Illustration of f - and g-type inter-valley phonon scattering
processes from the perspective of the X-valley on the positive kx-axis (yellow
valley) when degeneracy is considered, i.e. only states in the opaque valleys
are considered. The states in the transparent valleys are degenerate with
the states in the respective opaque valley on the same axis and need not
be tracked. Thus, a g-type inter-valley scattering process scatters into the
same valley with a multiplicity of ‘1’, while the f -type scattering processes
scatter into the adjacent two adjacent valleys, each with a multiplicity of
‘2’.

a degenerate group as the multiplicity of a state. The spin multiplicity will be
referenced as

µspin = 2 (2.92)

and the valley multiplicity as

µval = 2. (2.93)

Elimination of Odd Equations

We can reduce the size of the BE system for the Newton-Raphson approach
of Eq. (2.88) by using the inherent structure of the BE when only isotropic
scattering rates are considered. For this approach to work, we need to truncate
the series of Fourier harmonics in such a way that there is an equal number of
even and odd harmonics, which we will assume we are doing from now on.

To this end, consider the discretized BE of Eq. (2.85) for the index α =
(ν, yi+, Hj ,m), where m is an odd Fourier harmonic. Then the free streaming
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term of Eq. (2.80) will only contain distribution functions on the adjacent direct
grid points yi and yi+1 with even Fourier harmonics m ± 1. The associated
isotropic scattering shown in Eq. (2.82) contains even distribution functions of
the zeroth Fourier harmonic as well as the only odd distribution function fα in
the whole equation.

Since there is only one odd distribution function in the whole equation, we
can use Eq. (2.88) to express it in terms of the even distribution functions as

δfα

∣∣∣∣
m odd

=
1

ABE
αα


−F

BE
α −

NBE∑

β=1
β 6=α

ABE
αβ δfβ


 , (2.94)

where the elements of the Jacobian are defined by

ABE
αβ :=

∂FBE
α

∂fβ
. (2.95)

Now let us consider the discretized BE of Eq. (2.84) for the index α =
(ν, yi, Hj ,m), where m is an even Fourier harmonic. While the scattering term
of Eq. (2.81) and the boundary term of Eq. (2.83) only contains even distribution
functions, the free streaming term of Eq. (2.77) contains the odd distribution
functions fνm±1(yi±, Hj).

Using Eq. (2.94), we can eliminate all odd distribution functions from equa-
tions projected onto even harmonics of Eq. (2.88). For later convenience, let us
denote this linear transformation as SBE given by

ABE
α=(ν,yi,Hj ,m),β

∣∣∣∣
m even

SBE

−→ ABE
α,β −

∑

m′=m±1
yi′=yi±

ABE
α,(ν,yi′ ,Hj ,m′)

ABE
(ν,yi′ ,Hj ,m′),(ν,yi′ ,Hj ,m′)

ABE
(ν,yi′ ,Hj ,m′),β

,

(2.96)

such that the rows of SBEABE associated with indices of even harmonics, do
not contain any elements in the columns associated with odd harmonics. The
transformation SBE acts analogously on the r.h.s. of Eq. (2.88) as

FBE
α=(ν,yi,Hj ,m)

∣∣∣∣
m even

SBE

−→ FBE
α −

∑

m′=m±1
yi′=yi±

ABE
α,(ν,yi′ ,Hj ,m′)

ABE
(ν,yi′ ,Hj ,m′),(ν,yi′ ,Hj ,m′)

FBE
(ν,yi′ ,Hj ,m′)

.

(2.97)

Since the equations with even harmonics are completely decoupled from the
equations with odd harmonics, we can determine the distribution functions using
only half the equations.
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Later on we are going to need a formal description of how the system of
equations is reduced, therefore we will introduce some of the necessary notation
here. Let NBE be the number of indices of the BE. Then the Jacobian ABE is
an NBE ×NBE-matrix and Eq. (2.88) can be written down in matrix form as

ABEδf = −FBE (2.98)

with f ,FBE ∈ RNBE .

Now let us define a compression matrix CBE
e ∈ RNBE/2×NBE that removes

all odd rows, i.e. a unit matrix where the row index only runs over even equa-
tions such that – ignoring subband and energy indices for a moment – we can
write down the compression matrix CBE

e in terms of the harmonic index m in a
subspace of a subband ν at some position yi or yi+ and energy Hj as

CBE
e =

m = 0 m = 1 m = 2 m = 3 · · ·


1 0 0 0 · · · 0
0 0 1 0 · · · 0
...

. . .
...




m = 0
m = 2

...

. (2.99)

Thus, we can reduce Eq. (2.98) of the Newton-Raphson approach to only contain
even equations with even distribution functions as

CBE
e SBEABE (CBE

e )t︸ ︷︷ ︸
=:ABE

e/e

CBE
e δf︸ ︷︷ ︸
=:δfe

= −CBE
e SBE FBE

︸ ︷︷ ︸
=:FBE

e

, (2.100)

where ABE
e/e ∈ RNBE/2×NBE/2 only contains rows and columns of even harmonics,

δf e ∈ RNBE/2 only contains distribution functions of even harmonics, and FBE
e ∈

RNBE/2 only contains the BE projected onto even harmonics.

Once Eq. (2.100) is solved using a sparse linear solver such as ILUPACK [68],
we can calculate the odd distribution functions with Eq. (2.94). Thereafter, we
update the distribution function as in Eq. (2.89) and return to Eq. (2.100) for
the next iteration.

2.5 Iteration Schemes

Up until this section, we have shown how to discretize and solve the stationary
PE, SE, and BE in Sects. 2.2, 2.3, and 2.4, respectively. But solving each of
the equations only once cannot yield the correct solution since the equations are
interdependent. The PE requires an electron density and yields a potential, the
SE requires a potential and yields subband energies and wave functions, and
the BE requires subband energies and wave functions and yields a distribution
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function, which in turn can be used to compute the density in the PE. Only if all
variables, i.e. the potential, the subband energies, the wave functions, and the
distribution function, simultaneously solve the PE, SE, and BE, respectively,
do we actually have the correct solution. In this case, we call the solution self-
consistent.

Due to the cyclic dependence, it is not possible to achieve self-consistency
by solving each equation only once, but we must solve them iteratively in order
to approach the self-consistent solution. We will discuss two possible ways of
iteration: the popular Gummel type iteration and a rapidly converging Newton-
Raphson approach. The latter is an essential feature in achieving self-consistency
for small signal and noise related computations discussed in the following chap-
ters.

2.5.1 Gummel Type Iteration

The Gummel type iteration is a simple scheme that was originally introduced
to solve the PE and the drift-diffusion model self-consistently [57]. Nonetheless,
its basic premise is applicable also in our case [29].

In Gummel’s method, we take an initial guess for the density in the non-
linear PE, solve it and proceed to use the potential in the SE. Thereafter we
take the subbands and wave functions and solve the BE in order to obtain
the distribution function. The distribution functions are used to compute the
density for the PE, which initiates the next iteration step. The Gummel type
iteration is remarkably stable and – absent of inappropriate initial guesses for
the distribution function – solidly converges to a self-consistent solution.

However, before we attempt to solve the BE, we usually do a pre-iteration
including only the PE and SE as shown in Fig. 2.16. This is useful since the BE
can diverge, therefore we want to be as close to the actual solution as possible
when the BE is attempted to solve. Thus, we start by solving the non-linear
PE of Eq. (2.1) with an initial quasi Fermi potential ϕinit

n fulfilling the boundary
conditions.5 We obtain a potential V and insert it into the SE of Eq. (2.7), which
yields the wave functions and the subband energies. For the next iteration, we
need to compute the density as

n(x, y) =
µspin µval

Y 2
0

∑

ν

∫ ∞

εν(y)
dH Zv fνeq(y,H) |Ψν(x, y)|2,

which can be discretized as

n(xk, yi) =
µspin µval

Y 2
0

∑

ν

∑

j

∆Hν(yi, Hj) Z
v (f2D

eq )ν(xk, yi, Hj) |Ψν(xk, yi)|2

(2.101)

5We obtain the initial quasi Fermi potential ϕinit
n from a drift-diffusion simulation by the

GALENE III device simulation suite [100, 101] which also exports our grid and material data.
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with the equilibrium distribution function

(f2D
eq )ν(x, y,H) =

1

exp
(
H+qϕinit

n (x,y)
kBT

− log
(

ni
Neff

3D

))
+ 1

,

where the Fermi energy is given as in Eq. (2.46) except that we insert our initial
quasi Fermi potential. With the density of Eq. (2.101), we can use the non-linear
transformation of Eq. (2.3) in order to compute the quasi Fermi potential used
for the PE in the next iteration as

ϕn(xk, yi) = V (xk, yi)− VT log

(
n(xk, yi)

ni

)
. (2.102)

Note that the equilibrium distribution function strictly uses the quasi Fermi
potential ϕinit

n from the initialization. Using the quasi Fermi potential ϕn which
is updated every iteration, would result in a situation where both ϕn and the
potential V through the subband energies and wave functions influence the den-
sity which results in an unstable iteration. Therefore, we must measure the
equilibrium distribution function against a baseline quasi Fermi potential ϕinit

n .
The closer ϕinit

n is to the actual solution, the better the potential estimate of the
PE and SE iteration.

Once the pre-Gummel iteration of Fig. 2.16 has converged, we will have a
good estimate as to how the electron density – and therefore the potential –
is modified in the vicinity of the gate oxides. The next step is to start the
Gummel type iteration where the BE is included in the iteration loop as shown
in Fig. 2.17. Once again, we start out by using the quasi Fermi potential to
solve the non-linear PE of Eq. (2.1), then we use the potential to solve the SE of
Eq. (2.7). With the subband energies εν and wave functions Ψν , we can set up
the BE of Eq. (2.12). The BE can be solved using the Newton-Raphson approach
detailed in Sect. 2.4.6 with an initial guess for the distribution function. Once
again, we use the equilibrium distribution function but shifted by the applied
biases at the contacts and linearly interpolated in between

(f init)νm(y,H) =
δm,0
Y0

1

exp
(
H+qϕbias(y)

kBT
− log

(
ni
Neff

3D

))
+ 1

,

with

ϕbias(y) :=
1

yD − yS

(
(yD − y)V S

appl + (y − yS)V D
appl

)
.

Note that this is not the optimal way to start the iteration but it has worked
well for our case.
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Initial Guess

Poisson
Equation

Schrödinger
Equation

V , ϕn, Ψ, ε

ϕn

V

Ψ, ε

converged

Figure 2.16: Pre-Gummel iteration loop
consisting of PE and SE to approach the
correct solution for the subband energies
εν and wave functions Ψν before the solu-
tion of the BE is attempted.

Initial Guess

Poisson
Equation

Schrödinger
Equation

Boltzmann
Equation

V , Ψ, ε, f

ϕn, f

V

Ψ, ε

f

converged

Figure 2.17: Gummel type iteration proce-
dure for the PE, SE, and BE. We use an
initial guess for the quasi Fermi potential
ϕn for the PE. The initial guess for the
distribution function is needed since the
BE is non-linear and it is solved using the
Newton-Raphson approach.

When the BE is solved, we can use the resulting distribution function to
compute the density given by

n(x, y) = µspin µval

∑

ν

∫
d2k

(2π)2
fν(y,k) |Ψν(x, y)|2

= µspin µval

∑

ν

1

Y0

∫ ∞

εν(y)
dH Zν fν0 (y,H)|Ψν(x, y)|2,

which can be discretized as

n(xk, yi) = µspin µval

∑

ν

1

Y0

∑

j

∆Hν(yi, Hj) Z
ν fν0 (yi, Hj)|Ψν(xk, yi)|2.

(2.103)
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Inserting this density into Eq. (2.102), we can determine the quasi Fermi poten-
tial ϕn for the PE in the next iteration of the Gummel loop and repeat the whole
procedure until the potential, subband energies, wave functions, and distribution
functions have converged towards the self-consistent solution.

Note that far away from the solution, during the iteration of the Newton-
Raphson approach for the BE, unphysical distribution functions may occur. It is
important to chop these values, i.e. ensure that the distribution function always
satisfies 0 ≤ fν(y,k) ≤ 1, or otherwise the Newton-Raphson approach is prone
to diverge.

2.5.2 Newton-Raphson Approach

Far from equilibrium, the Gummel type iteration has the disadvantage that it
takes an excessive amount of iterations to converge. It is also inadequate to de-
termine the response of the system of equations to perturbations or fluctuations
since the interdependencies of the potential, the wave functions and subband
energies, and the distribution functions are not explicit. To address our needs
for the eventual formulation of the small signal and noise problems, we are going
to introduce a Newton-Raphson approach including the PE, SE, and BE, which
also provides a rapidly converging solver for the stationary problem.

The idea behind the application of the Newton-Raphson approach is simple.
We treat the PE together with the BE as one set of equations which needs to
be solved simultaneously, i.e.

∑

β

∂FBE
α

∂fβ
δfβ +

∑

b

∂FBE
α

∂Vb
δVb = − FBE

α ,

∑

β

∂FPE
a

∂fβ
δfβ +

∑

b

∂FPE
a

∂Vb
δVb = − FPE

a ,

(2.104)

where α and β are aggregate indices running over all coordinates of the BE as
in Eq. (2.86) and a and b run over all coordinates of the PE as

a, b ∈
{

(xk, yj) | k ∈ {1, . . . , Nx}, j ∈ {1, . . . , Ny}
}
. (2.105)

Note that the PE depends directly on the distribution f through the density.
However, until now we expressed the density through the non-linear transfor-
mation of Eq. (2.3) via the quasi Fermi potential. But in the Newton-Raphson
approach of Eq. (2.104), we need an explicit dependency on the distribution
function and therefore we use Eq. (2.103) directly to compute the density. For
this to work, we already need to be close enough to the solution that stabilization
via the exponential form of the density is not necessary.

The SE cannot be included in Eq. (2.104) like the PE and BE since it is
an eigenvalue equation. Moreover, the BE does not explicitly depend on the
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potential but only on the wave functions and subband energies resulting from
the SE. Thus, in order to set up Eq. (2.104), we need to understand how the
wave functions and subband energies change if the potential changes. But this
is given by the first order time-independent perturbation theory of Eqs. (2.10)
and (2.11). Note that since the Newton-Raphson approach given by Eq. (2.104)
is simply the Taylor expansion up to first order, the first order perturbation
theory is sufficient to capture the influence of the potential up to this order
completely.

From the variations of Eqs. (2.10) and (2.11) it follows that the derivative
w.r.t. the potential can be reformulated in terms of subband energies and wave
functions in order to yield the system of equations

∑

β

∂FBE
α

∂fβ
δfβ +

∑

b

(∑

k

∂FBE
α

∂εk

∂εk

∂Vb
+
∑

`

∂FBE
α

∂Ψ`

∂Ψ`

∂Vb

)
δVb = − FBE

α ,

∑

β

∂FPE
a

∂fβ
δfβ +

∑

b

∂FPE
a

∂Vb
δVb = − FPE

a ,

(2.106)

where k runs over all indices of ε, ` runs over all indices of Ψ and

∑

b

∂εk

∂Vb
δVb = δεk,

∑

b

∂Ψ`

∂Vb
δVb = δΨ`,

which means the derivatives of ε and Ψ w.r.t. V can be simply read off of
Eqs. (2.10) and (2.11). Note that the setting up the system in Eq. (2.106) is
quite cumbersome in practice since we find that each term of the BE is dependent
on the subband energy through the boxes in H-space.

In order to express the elimination of the odd equations reasonably and for
later convenience, we are going to introduce some additional notation at this
point. Let us denote the linear system of Eq. (2.104) as

ADC δx = −F , (2.107)

where

δx =
(
δf δV

)t
, F =

(
FBE F PE

)t
(2.108)

are the vectors containing all discretized distribution functions and the potential
as well as all discretized equations, respectively. Note that F should already
contain the right hand sides of the boundary conditions. Thus, ADC is the
matrix defined in such a way that Eq. (2.107) is equal to Eq. (2.104) except for
where the boundary conditions of Eq. (2.4) are applied.

Assume that we already applied any reduction concerning the degeneracy
of the BE as discussed in Sect. 2.4.6. We also want to eliminate all the odd
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equations from the BE as was also discussed in Sect. 2.4.6. Since, we consider
a system of equations including the PE, we need to extend the transformation
matrix SBE, defined by Eqs. (2.96) and (2.97), as

S :=

(
SBE 0

0 IPE

)
∈ RN×N , (2.109)

where IPE ∈ RNPE×NPE is the unit matrix and N = NBE + NPE. Likewise, the
compression matrix of Eq. (2.99) is given by

Ce :=

(
CBE
e 0
0 IPE

)
∈ Rn×N , (2.110)

where n = NBE/2 +N . Thus, analogous to Eq. (2.100), we solve the system of
equations given by

Ce S A
DC (Ce)

t

︸ ︷︷ ︸
=:ADC

e/e

Ce δx︸ ︷︷ ︸
=:δxe

= −Ce S F︸ ︷︷ ︸
=:F e

, (2.111)

where ADC ∈ Rn×n is the system of equations consisting of only the even rows
and columns of the BE as well as the PE, δxe contains only the even distribution
functions as well as the potential, and F e contains only the even equations of
the BE as well as the PE.

Once again, we use the sparse linear solver ILUPACK [68] in order to solve
Eq. (2.111). Thereafter, we compute the odd distribution functions from the
odd rows of the BE similar to Eq. (2.94), only now, we need to sum over the
potential as well, i.e.

fα

∣∣∣∣
α odd

=
1

ABE
α,α


−F

BE
α −

NBE∑

β=1
β 6=α

ABE
α,βfβ −

NPE∑

b=1

ABE
α,NBE+bVb


 . (2.112)

Then we update our variables as

f −→ f + δf, V −→ V + δV

and solve the next iteration of Eq. (2.111) until convergence is achieved.

Figure 2.18 shows the flowchart of the algorithm for the Newton-Raphson
approach of PE, SE, and BE. We take an initial value for the potential and the
distribution function, preferably from a previous Gummel type iteration, and
we use the potential to solve the SE. Thereafter we take the wave functions
and subband energies, as well as the distribution function from the Gummel



80 CHAPTER 2. STATIONARY EQUATIONS

Initial Guess

Schrödinger
Equation

Poisson &
Boltzmann
Equations

V , Ψ, ε, f

V , f

Ψ, ε

V

converged

Figure 2.18: Newton-Raphson approach for solving the PE, SE, and BE.
We take an initial guess for the potential V and the distribution function
f and update the subband energies ε and wave functions Ψ. Thereafter we
solve the combined system of PE and BE and return to the SE, unless our
solution has sufficiently converged.

type iteration, to setup the system of equations of Eq. (2.111) and solve for the
potential and distribution functions.

The reason we need to solve the SE after each Newton step is that, although
the effects of a change in the potential on the wave functions and subband
energies are correctly included in the Newton-Raphson approach, they are only
valid up to linear order. Therefore, it is necessary to update the unperturbed
wave functions and subband energies with the exact values at each iteration.

Since all three equations are included in the Newton-Raphson approach, it
is expected to converge with the usual rapid quadratic rate in the vicinity of the
solution which will be shown in Sect. 5.2.1.



Chapter 3

Small Signal Analysis

One of the main achievements of this work is to understand how small sig-
nal quantities can be computed in the framework of Poisson equation (PE),
Schrödinger equation (SE), and Boltzmann equation (BE) with anH-transformed
energy space. The H-transformation is a boon for stationary computations but
it makes it difficult to derive discretized equations suitable for the small signal
analysis. Not only do we obtain an additional term due to the time-dependence
of the H-transformation but a naive discretization also breaks important con-
tinuum symmetries and conservation laws.

Another difficulty is the dimensional splitting where the PE is defined in 2D,
the SE is defined in confinement direction, and the BE is defined in transport
direction. Usually the Ramo-Shockley theorem is used to compute terminal
currents in devices [102, 103, 104] but it is not obvious how to apply the theorem
in the case of our split dimensions. Therefore we derive a form of the Ramo-
Shockley theorem that is suitable suitable for our case.

Lastly, we are going to introduce the adjoint method of solving the system
of equations for the admittance parameters. This is going to enable us to solve
both the noise and the small signal problem in one step.

3.1 Linearization

The idea of the small signal analysis is that we have a stationary bias applied
to our contacts and on top of that we introduce a small sinusoidal perturbation
on one of the contacts. Let the stationary applied bias at some contact is given
by V C

appl, then we can express the total applied bias as

Ṽ C
appl(t) = V C

appl + Re
(
V C

appl e
iωt
)
, (3.1)

where V C
appl is the phasor of the small signal bias and ω is the angular frequency

of the applied bias.

81
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We expect the system to respond to the additional small signal bias. The
response is – of course – governed by the PE, SE, and BE. For the PE and SE we
assume that any small signal bias is slow enough such that the time-dependence
can be assumed as a quasistationary change in the potential, wave functions,
and subband energies. Thus, the PE of Eq. (2.1) and the SE of Eq. (2.7) are
still valid. In contrast, we need to include the time-derivative in the BE, yielding

0 =
[
F̃BE

]ν
(y,k, t) := T̃ ν(y,k, t) + L̃ν(y,k, t)− S̃ν(y,k, t)− Γ̃ν(y,k, t) (3.2)

where we define the time-derivative as

T̃ ν(y,k, t) :=
∂

∂t
f̃ν(y,k, t) (3.3)

for future reference. Moreover, the time-dependent free streaming term L̃, scat-
tering term S̃, and boundary term Γ̃ can be obtained by replacing the stationary
distribution function with a time-dependent one as

Lν(y,k)
fν(y,k)→f̃ν(y,k,t)−−−−−−−−−−−→ L̃ν(y,k, t),

Sν(y,k)
fν(y,k)→f̃ν(y,k,t)−−−−−−−−−−−→ S̃ν(y,k, t),

Γν(y,k)
fν(y,k)→f̃ν(y,k,t)−−−−−−−−−−−→ Γ̃ν(y,k, t),

with L, S, and Γ defined by Eqs. (2.13), (2.15), and (2.38), respectively.

Since we assume that the small signal perturbation is given by a harmonic
time-dependence as in Eq. (3.1), we can express the distribution function and
potential in a similar way as

f̃ν(y,k, t) = fν(y,k) + Re
(
fν(y,k) eiωt

)
, (3.4)

Ṽ (r, t) = V (r) + Re
(
V (r) eiωt

)
, (3.5)

where f and V are small. Naturally, the wave functions and subband energies
also respond to the changed potential as

ε̃ν(y, t) = εν(y) + Re
(
εν(y) eiωt

)
, (3.6)

Ψ̃ν(x, y, t) = Ψν(x, y) + Re
(
Ψν(x, y) eiωt

)
, (3.7)

where the phasors can be directly computed since V is a small perturbation.
Completely analogous to Eqs. (2.10) and (2.11) we find

εν(y) = − q
∫
dx |Ψν(x, y)|2 V (x, y) =:

∫
dx∆ν

ε(x, y) V (x, y), (3.8)
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Ψν(x, y) = − q
∑

ν′ 6=ν
v′=v

∫
dx′Ψν′(x′, y) V (x′, y0) Ψν(x′, y)

εν(y)− εν′(y)
Ψν′(x, y)

=:

∫
dx′∆ν

Ψ(x, x′, y)V (x′, y), (3.9)

where we also defined the abbreviations ∆ε and ∆Ψ for later convenience. Bear
in mind that the sum in the wave function only runs over all subbands of the
same valley.

Since we are only interested in the small signal response up to linear order,
it is not necessary to solve the SE since perturbation theory already gives us all
the information we need about the quasistationary wave functions and subband
energies.

Assuming the stationary solution of the BE is known, we can insert the linear
expansions of Eqs. (3.4) and (3.5) into the full BE of Eq. (3.2) and drop all terms
of higher than linear order, yielding

0 =
[
F̃BE

]ν
(y,k, t) ≈

[
FBE

]ν
(y,k)

︸ ︷︷ ︸
=0

+Re
([
FBE

]ν
(y,k) eiωt

)
, (3.10)

where FBE only contains terms linear in f or V . It follows trivially that

0 =
[
FBE

]ν
(y,k) (3.11)

needs to be fulfilled which is the equation we will attempt to solve.
The whole linearization of F̃BE is equivalent to a Taylor expansion up to

first order around the stationary solution which is the same as the setup of the
Newton-Raphson approach of Eq. (2.106). Thus, we can reuse all parts of the BE
except for the time derivative. Then, after the Herring-Vogt transformation, the
projection onto equienergy lines and Fourier harmonics, the H-transformation,
and the discretization, Eq. (3.11) can be expressed as

Tα +
∑

β

∂FBE
α

∂fβ
f
β

+
∑

b

(∑

k

∂FBE
α

∂εk

∂εk

∂Vb
+
∑

`

∂FBE
α

∂Ψ`

∂Ψ`

∂Vb

)
V b

=
∑

C= S,D

∂Γα

∂V C
appl

V C
appl, (3.12)

where Tα is the transformed and discretized time-derivative discussed in Sect. 3.2,
FBE
α is defined by Eq. (2.87), the term proportional to V C

appl is the small signal
response of the generation and recombination (GR) term to a perturbation in
the applied bias which will be derived in Sect. 3.3, α and β are aggregate indices
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running over all indices of the BE as in Eq. (2.86), and a and b are aggregate
indices running over all indices of the PE as in Eq. (2.105). Furthermore, the
subband energy index is given by k = (ν, yi) and the wave function index is
given by ` = (ν, xk, yi). Note that the derivatives of the subband energy and
wave functions are simply given by the response to perturbations as

εk =
∑

b

∂εk

∂Vb
V b, Ψ` =

∑

b

∂Ψ`

∂Vb
V b.

Completely analogously, we can linearize the stationary PE as

0 = F̃PE(r) ≈ FPE(r)︸ ︷︷ ︸
=0

+Re
(
FPE(r) eiωt

)
(3.13)

and therefore it follows that we need to solve

0 = FPE(r), (3.14)

where FPE is linear in f and V . As in the case of the BE, the linearization
is equivalent to a Taylor expansion around the stationary state and thus we
can express Eq. (3.14) with the help of the Jacobian of the Newton-Raphson
approach as

∑

β

∂FPE
a

∂fβ
f
β

+
∑

b

∂FPE
a

∂Vb
V b = 0. (3.15)

For later reference, we want to record that the linearized small signal PE takes
the shape

FPE(r) := ∇r · (κ(r)∇rV (r))− qn3D(r) = 0. (3.16)

The 3D small signal electron density is given by

n3D(r) =
∑

ν

(
nν(y)|Ψν(r)|2 + 2nν(y)Ψν(r)Ψν(r)

)
, (3.17)

where the wave functions were assumed to be real and the small signal sheet
density per subband reads

nν(y) =

(
Zv

Y0

∫ ∞

εν(y)
dH fν

0
(y,H)

)
− Zv

Y0
fν0 (y, εν(y)) εν(y). (3.18)

Equations (3.12) and (3.15) form a linear system of equations that can be
directly solved to obtain the small signal perturbations f and V . The treatment
of the discretized time-derivative Tα is postponed to Sect. 3.2. Furthermore,
boundary conditions are discussed in Sect. 3.3. Setting up the equations for
small signal analysis naively as in Eqs. (3.12) and (3.15) will lead to inconsis-
tencies with symmetries and conservation laws. The resolution of these issues is
discussed in Sect. 3.5.
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3.2 Time-Derivative of the Boltzmann Equation

In order to determine the time-derivative of the BE, we need to apply the same
transformations to T̃ ν(y,k, t) of Eq. (3.3) as to the rest of the BE. These in-
clude the Herring-Vogt transformation, the projection onto equienergy lines and
Fourier harmonics as well as the H-transformation (see Sect. 2.4.4) and the
discretization via the box-integration method (see Sect. 2.4.5).

The Herring-Vogt transformation leaves T̃ invariant. After the projection
onto equienergy lines and Fourier harmonics, we find

T̃ νm(y,E, t) :=

∫
d2k

(2π)2
T̃ ν(y,k, t) δ(E − Eν(k))Ym(φ) = Zv

d

dt
f̃νm(y,E, t).

(3.19)

Regarding the H-transformation, we have to be careful since Eq. (2.65) states
that H depends on the subband energy ε which in turn is time-dependent as
in Eq. (3.6). That means the order of the time-derivative in Eq. (3.19) and the
transformation to H-space matters. Therefore we obtain

T̃ νm(y,E, t) −→ T̃ νm(y,H, t) = Zv
d

dt
f̃νm(y,Hν(y,E, t), t)

∣∣∣∣
Hν(y,E,t) =H

= Zv
d

dt

[
fνm(y,Hν(y,E, t))

+ Re
(
fν
m

(y,Hν(y,E, t)) eiωt
) ]∣∣∣∣

Hν(y,E,t) =H

= Zv
∂fνm(y,H)

∂H

dHν(y,E, t)

dt

+ ZvRe
(
iωfν

m
(y,H) eiωt

)

+ ZvRe

(
∂fν

m
(y,H)

∂H

dHν(y,E, t)

dt
eiωt

)

= Re



iωZv

(
∂fνm(y,H)

∂H
εν(y) + fν

m
(y,H)

)

︸ ︷︷ ︸
=: T νm(y,H)

eiωt




+O
(
fν
m

(y,H) εν(y)
)
, (3.20)

where we only kept terms up to linear order and used that

dHν(y,E, t)

dt
= Re

(
iω εν(y) eiωt

)
,
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which follows immediately from Eqs. (2.65) and (3.6). In the last line, we also
defined the phasor of the small signal perturbation of the time derivative as T .

Now we can box-integrate T around a direct grid point to find

T̄
ν
m(yi, Hj) :=

∫ Hj+

Hj−
dH

∫ yi+

yi−
dy T νm(y,H)

∣∣∣∣
m even

= iωZv∆yi

(∫ Hj+

Hj−
dH

∂fνm(yi, H)

∂H
εν(yi)

+ ∆Hν(yi, Hj) f
ν
m

(yi, Hj)

)∣∣∣∣∣
m even

= iωZv∆yi

((
fνm(yi, Hj+)− fνm(yi, Hj−

)
εν(yi)

+ ∆Hν(yi, Hj) f
ν
m

(yi, Hj)
)∣∣∣∣
m even

(3.21)

and likewise for the adjoint grid

T̄
ν
m(yi+, Hj) :=

∫ Hj+

Hj−
dH

∫ yi+1

yi

dy T νm(y,H)

∣∣∣∣
m odd

= iωZv∆yi+

((
fνm(yi+, Hj+)− fνm(yi+, Hj−

)
εν(yi+)

+ ∆Hν(yi+, Hj) f
ν
m

(yi+, Hj)
)∣∣∣∣
m odd

. (3.22)

Note that the integral over the H-box cannot be trivially resolved since we do
not have an adjoint H-grid. Instead, we need resort to an averaging scheme
that is consistent with an integration in the continuum. To this end, let us
recall that the BE of Eq. (2.13) integrated over k-space and summed over all
subbands, must yield the continuity equation:

∂

∂y
j̃(y, t) +

∂

∂t
ñ(y, t) = 0. (3.23)

Since our scattering terms described in Sect. 2.4.2 are charge conserving, only
the term T̃ can give rise to the rate in charge generation or recombination and
thus we have1

∂ñ(y, t)

∂t
=
∑

ν

∫
d2k

(2π)2
T̃ ν(y,k, t).

1When considering degeneracies, we will also find spin and valley multiplicities in the ex-
pression for the density.
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Using

ñ(y, t) = n(y) + Re
(
n(y)eiωt

)
(3.24)

and the usual transformations and the box-integration, it follows

iω n(yi) ∆yi =
∑

ν

1

Y0

∑

j

T̄
ν
0(yi, Hj). (3.25)

On the other hand, the straightforward linearization of the electron density
yields

n(yi) =
∑

ν

1

Y0

∑

j

Zv

(
fν0 (yi, Hj)

∂∆Hν(yi, Hj)

∂εν(yi)
εν(yi)

+ fν
0
(yi, Hj)∆H

ν(yi, Hj)

)
.

(3.26)

Comparing Eq. (3.25) and Eq. (3.26) we find that the following relation must
hold if we want the time-derivative in the BE to be consistent with the definition
of the density:

NH∑

j=jmin

(fν0 (yi, Hj+)− fν0 (yi, Hj−))
!

=
∑

j

fν0 (yi, Hj)
∂∆Hν(yi, Hj)

∂εν(yi)

= − fν0 (yi, Hjmin),

(3.27)

where it was used that the derivative of the H-box is only non-zero at the
subband edge (cf. Eq. (2.75)) and jmin is the index of the box surrounding the
subband energy

Hjmin− ≤ εν(yi) < Hjmin+ .

Note that Eq. (3.27) would be fulfilled in the continuum but in discretized H-
space, we need to carefully define what fν0 (yi, Hj±) is in terms of the distribution
function on the direct H-grid points. Let us define it as

(
fνm(y,Hj+)
fνm(y,Hj−)

)
=





(
0

1
2 [fνm(y,Hj) + fνm(y,Hj−1)]

)
, if Hj+ > HNH > Hj−,

(
1
2 [fνm(y,Hj+1) + fνm(y,Hj)]

fνm(y,Hj)

)
, if Hj+ > εν(y) ≥ Hj−,

(
0

0

)
, if εν(y) ≥ Hj+,

(
1
2 [fνm(y,Hj+1) + fνm(y,Hj)]
1
2 [fνm(y,Hj) + fνm(y,Hj−1)]

)
, else,

(3.28)
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where y can be either a direct point, if m is even, or an adjoint point, if m is
odd. Only if we choose the distribution function on the H-grid points Hj± as in
Eq. (3.28), can we get a discretized time derivative as in Eqs. (3.21) and (3.22)
that is consistent with a rate of change of the electron density.

In this work we will often refer to the transformed and discretized time-
derivative of the BE with the aggregate index α of Eq. (2.86) as

Tα := T̄
ν
m(yi, Hj).

This form of the time-derivative has already made an appearance in the system
of equations of the small signal BE of Eq. (3.12).

3.3 Boundary Conditions

Equations (3.12) and (3.15) together with the time-derivative shown in Eqs. (3.21)
and (3.22) form a linear system of equations that can be solved directly once
we add suitable boundary conditions. Recall that the BE has Neumann bound-
ary conditions with a GR rate at the source and drain contacts as described
in Sect. 2.4.3. Furthermore, the PE has Dirichlet boundary conditions on the
gate contacts and Neumann boundary conditions everywhere else as described
in Sect. (2.2.2).

If we apply a small signal bias as in Eq. (3.1) to the gate contacts described by
the sets ∂DTG, ∂DBG ⊂ R2, the Dirichlet boundary conditions of the linearized
PE are given by

V (r)

∣∣∣∣
(r)∈∂DTG/BG

= V
TG/BG
appl , (3.29)

which is nothing else but the trivial linearization of Eq. (2.4).
Let us turn to the boundary conditions of the BE on the source and drain

contacts, respectively. Recall that we defined them in Sect. 2.4.3 as GR rates at
y = yS/D. Thus, in order to understand how a small signal bias affects them, we
need to linearize Γ of Eq. (2.83) around its stationary value. This includes the
linearization w.r.t. the distribution function and the potential but it also includes
a response from the equilibrium distribution of carriers within the contact. This
is because when we apply a small signal bias to the source or drain, we effectively
change the Fermi level. The effect of the small signal bias on the equilibrium
distribution function of Eq. (2.70) can be expressed via a Taylor expansion up
to linear order:

f̃eq(yS/D, H, t) =
1

exp

(
H+qṼ

S/D
appl (t)

kBT
− log

(
ni
Neff

3D

))
+ 1
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= feq(y,H) + feq(y,H)
(
feq(y,H)− 1

) 1

VT
Re
(
V

S/D
apple

iωt
)

+O
((

V
S/D
appl

)2
)
. (3.30)

It follows immediately that the phasor of the small signal equilibrium distribu-
tion function is given by

f
eq

(y,H) = feq(y,H)
(
feq(y,H)− 1

)V appl(y)

VT

and therefore the total box-integrated phasor of the small signal GR rate on the
contacts reads

Γα =
∑

β

∂Γα

∂fβ
f
β

+
∑

b

∂Γα

∂Vb
V b +

∑

C= S,D

∂Γα

∂V C
appl

V C
appl, (3.31)

where the derivatives w.r.t. f and V are already contained in Eq. (3.12) in the

derivatives of FBE
α . The remaining term represents the term proportional to the

applied bias V C
appl of the source and drain contacts and is given by

∑

C= S,D

∂Γα

∂V C
appl

V C
appl =

∑

C= S,D

∂Γ̄νm(yi, Hj)

∂V C
appl

V C
appl

= vGRZ
v δm,0
Y0

f
eq

(yi, Hj) (δyi,yS + δyi,yD) ∆Hν(yi, Hj).

(3.32)

Note that this term is only proportional to the small signal phasor of the applied
bias V appl and therefore it is located on the r.h.s. of Eq. (3.12).

3.4 Ramo-Shockley Theorem

Usually we are not interested in internal quantities of the device but rather such
quantities as terminal currents that can be directly compared to measurements.
Later on, we will see that the adjoint method of the small signal analysis also
relies on a projection operator onto the terminal currents (cf. Sect. 3.6.2). More-
over, in Sect. 4.6 we will formulate the power spectral density of fluctuations of
the terminal currents as well as the origin of noise that is seen in the terminal
currents.

For all these purposes, it becomes necessary to have a sound definition of the
terminal currents. The terminal current at a contact C is defined as the sum of
the charge current and displacement current flowing over the contact:

ĨC(t) = −
∫

∂DC

dA ·
[
qJ̃(r, t) +

∂

∂t

(
κ(r)∇Ṽ (r, t)

)]
, (3.33)
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where ∂DC is the set of vectors contained in the contact C, dA is the normal
vector on the contact pointing into the device, J̃ is the electron current density,
κ is the dielectric constant, and Ṽ is the electric potential. The numerical
issue with this definition is that it relies on an integration over the flux through
a contact, which cannot be expressed reliably on a grid where fluxes are on
adjoint grid points and contacts are on direct grid points. Therefore we aim to
transform the integration over a contact into a volume integration over the whole
device using the Ramo-Shockley theorem [102, 103, 104] which is numerically
more robust. The following derivation is valid for general devices where the BE
is used to compute transport phenomena and the SE is used to compute the
confinement in the directions perpendicular to the transport.

To this end, let us disassemble the current density into its constituents.
Since the BE describes a multitude of subbands which conduct a current, we
can separate the electron current density into its subbands as

J̃(r, t) =
∑

ν

J̃
ν
(r, t).

Furthermore, we can split up the current density into a part in transport direc-
tion and a part orthogonal to the transport direction as

J̃
ν
(r, t) = J̃

ν
y(r, t) + J̃

ν
⊥(r, t) (3.34)

with

J̃y(r, t) := j̃ν(y, t)|Ψ̃ν(r, t)|2ey, (3.35)

where j̃ is the 1D current density described by the time-dependent BE in trans-
port direction (cf. Eq. (A.6)), Ψ̃ is the time-dependent wave function of the
confined electron gas, and ey is the unit vector in transport direction. Integrat-
ing the BE for a single subband over k-space yields the 1D continuity equation:

∂

∂y
j̃ν(y, t) +

∂

∂t
ñν(y, t) = S̃ν(y, t) + Γ̃ν(y, t), (3.36)

where S̃ν(y, t) and Γ̃ν(y, t) are the scattering rate and the boundary GR rate
integrated over k-space. Note that even when the scattering rate is charge
conserving in total, it need not be charge conserving per subband.

Now let us derive the expression for the terminal current by using the Ramo-
Shockley theorem. The Ramo-Shockley test functions hC are chosen to obey the
Laplace equation

∇ · (κ(r)∇hC(r)) = 0
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with Dirichlet boundary conditions on all contacts

hC(r) = δC,C′ , r ∈ ∂DC′ (3.37)

and Neumann boundary conditions everywhere else. Here, D ⊂ R2 denotes the
set containing all the vectors in the device, ∂D denotes the surface of the device,
and ∂DC′ is the set containing all vectors of the C ′-th contact.

Due to the boundary conditions of Eq. (3.37), we can simply multiply the
integrand of Eq. (3.33) by the test function and extend the integral over the
whole surface, yielding

ĨC(t) = −
∫

∂D
dA ·

{
hC(x, y)

[
q
∑

ν

J̃
ν
(r, t) +

∂

∂t

(
κ(r)∇Ṽ (r, t)

)]}
.

Using the Gaussian integral theorem, we can already transform a part of the
surface integral into a volume integral

ĨC(t) = − q
∑

ν

∫

∂D
dA ·

(
hC(r)J̃

ν
(r, t)

)

︸ ︷︷ ︸
=: I1

−
∫

D
dV hC(r)

∂

∂t

(
∇ ·
(
κ(r)∇Ṽ (r, t)

))

︸ ︷︷ ︸
=: I2

−
∫

D
dV∇hC(r) · ∂

∂t

(
κ(r)∇Ṽ (r, t)

)

︸ ︷︷ ︸
=: I3

, (3.38)

where we defined the abbreviations I1 through I3 for convenience.
Due to the dimensional structure of our problem, where source and drain

contacts are perpendicular to the transport direction and where the gate contacts
are outside of the semiconductor region (cf. Fig. 2.1), the only contribution to the
surface integral over the current density stems from the component in transport
direction at the source and drain contacts:

I1 =

∫

∂D
dA ·

(
hC(r)J̃

ν
y(r, t)

)
=

∫

∂D
dA · ey

(
hC(r)j̃ν(y, t)|Ψ̃ν(r, t)|2

)
,

where we used Eq. (3.35) in the second step. As was shown in Sect. 2.4.3,
the current density at the contacts is solely determined by the GR term at the
contacts. Thus, using Eqs. (2.39) and (2.40), we find

I1 = −
∫

D
dV hC(r)Γ̃ν(y, t)|Ψ̃ν(r, t)|2. (3.39)



92 CHAPTER 3. SMALL SIGNAL ANALYSIS

Note that the integration over the surface has been converted into a volume
integration over the whole device, since Γ̃ is defined using distribution functions
on the contacts (see Eq. (2.38)).

The second term can be transformed using the PE of Eq. (2.1):

I2 = q

∫

D
dV hC(r)

∂

∂t

(∑

ν

q ñν(y, t)|Ψ̃ν(r, t)|2
)
. (3.40)

Finally, the third term can be simplified by noting that the potential can be
split into two parts [104] as

Ṽ (r, t) = Ṽsc(r, t) +
∑

C′
hC′(r)Ṽ C′

appl(t),

where Ṽsc(r, t) is the part of the potential relating to the space charge, i.e. sat-
isfying the PE, but with Dirichlet boundary conditions on all contacts given
by

Ṽsc(r, t) = 0, for r ∈ ∂DC .

Conversely, the other part of the potential satisfies the Laplace equation as is
explicitly clear from its construction with the Ramo-Shockley test functions hC ,
however, it has Dirichlet boundary conditions given by the applied biases Ṽ C

appl.
Therefore the third term yields

I3 =
∂

∂t

∫

D
dV κ(r)∇hC(r) · ∇

(
Ṽsc(r, t) +

∑

C′
hC′(r)Ṽ C′

appl(t)

)

=
∂

∂t

[ ∫

∂D
dA ·

(
Ṽsc(r, t)κ(r)∇hC(r)

)

︸ ︷︷ ︸
=0

+

∫

D
dV Ṽsc(r, t)∇ ·

(
κ(r)∇hC(r)

)

︸ ︷︷ ︸
=0

+
∑

C′

∫

D
dV κ(r)∇hC(r) · ∇hC′(r)Ṽ C′

appl(t)

]
.

With the definition of the capacitance matrix,

CC,C′ :=

∫

D
dV κ(r)∇hC(r) · ∇hC′(r), (3.41)

we obtain

I3 =
∂

∂t

∑

C′
CC,C′ Ṽ C′

appl(t). (3.42)
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With I1, I2, and I3 of Eq. (3.39), (3.40), and (3.42), respectively, the termi-
nal current of Eq. (3.38) can be expressed as

ĨC(t) = q

∫

D
dV hC(r)

∑

ν

[
Γ̃ν(y, t)|Ψ̃ν(r, t)|2 − ∂

∂t

(
ñν(y, t)|Ψ̃ν(r, t)|2

)]

− ∂

∂t

∑

C′
CC,C′ Ṽ C′

appl(t) (3.43)

and using the continuity equation of Eq. (3.36), we find

ĨC(t) = q

∫

D
dV hC(r)

∑

ν

[(
∂

∂y
j̃ν(y, t)− S̃ν(y, t)

)
|Ψ̃ν(r, t)|2

− ñν(y, t)
∂

∂t
|Ψ̃ν(r, t)|2

]
− ∂

∂t

∑

C′
CC,C′ Ṽ C′

appl(t).

(3.44)

In our case, we apply a small signal bias to the contacts and therefore, we
can linearize the equation using the usual expansion into a stationary part and
a small harmonic perturbation as was shown in Sect. 3.1. Then we find for the
phasor of the small signal terminal current

IC = q

∫

D
dV hC(r)

∑

ν

[(
∂

∂y
jν(y)− Sν(y)

)
|Ψν(r)|2

+ 2

(
∂

∂y
jν(y)− Sν(y)

)
Ψν(r)Ψν(r)

− 2iωnν(y)Ψν(r)Ψν(r)

]
− iω

∑

C′
CC,C′V C′

appl,

where we used that the wave functions are purely real. Finally, we can use the
continuity equation for the stationary case,

∂

∂y
jν(y) = Sν(y) + Γν(y),

and the definition of the GR rate of Eq. (2.38) to simplify

∫

D
dV hC(r)

(
∂

∂y
jν(y)− Sν(y)

)
Ψν(r)Ψν(r)

=

∫

D
dV hC(r)Γν(y)Ψν(r)Ψν(r)
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= −
∫

∂DS∪∂DS

dA hC(r)vGR (nν(y)− neq) Ψν(r)Ψν(r)

= − (δC,S + δC,D)

∫

∂DC

dA vGR (nν(y)− neq) Ψν(r)Ψν(r) = 0,

where we used that the source and drain contacts span the whole semiconductor
region (cf. Fig. 2.1). This implies that the Ramo-Shockley test function hC is
unity over the whole surface integration region on the C-th contact while it is
zero on the other contacts. The reason why this integral vanishes in the last
step is that Ψ and Ψ are orthogonal to each other. Note that we can only omit
this term if our source and drain contacts cover the whole semiconductor region
in confinement direction, otherwise we have to include it.

Thus, the final expression for the phasor of the small signal terminal current
is given by

IC = q

∫

D
dV hC(r)

∑

ν

[(
∂

∂y
jν(y)− Sν(y)

)
|Ψν(r)|2

− 2iωnν(y)Ψν(r)Ψν(r)

]
− iω

∑

C′
CC,C′V C′

appl. (3.45)

and since the device is homogeneous in z-direction (cf. Fig. 2.1), we can trivially
integrate over a box of size ∆z which yields

IC = I ′C∆z,

where I ′C is the terminal current per length in z-direction.

Discretizing Eq. (3.45) is straightforward. With a spatial grid as presented
in Sect. 2.4.5, the derivative of the current density can be expressed as

∂jν

∂y
(yi) =

jν(yi+)− jν(yi−)

∆yi
,

where the current density vanishes outside the device, i.e. jν(y1−) = jν(yNy+) =
0. All other quantities are located on direct spatial grid points and therefore we
find

I ′C = q
∑

k,i,ν

∆xk ∆yi hC(xk, yi)

[(
jν(yi+)− jν(yi−)

∆yi
− Sν(yi)

)
|Ψν(xk, yi)|2

− 2iωnν(yi)Ψ
ν(xk, yi)Ψ

ν(xk, yi)

]
− iω

∑

C′
C′C,C′V C′

appl. (3.46)
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3.5 Reciprocity

In most cases, as in ours, we expect reciprocity of a device in equilibrium without
a magnetic field [51]. Reciprocity is a property in equilibrium which states that
applying a small signal bias at contact C and measuring the small signal terminal
current at contact C ′ will yield the same result as applying a small signal bias to
contact C ′ and measuring the small signal terminal current at contact C. This
property is valid irrespective of the sizes or shapes of the contacts or whether
they are ohmic or metal contacts. Thus, reciprocity simply means that the
admittance matrix Y has to be symmetric, i.e.

YC,C′ = YC′,C ,

with

YC,C′ =
∂IC

∂V C′
appl

=
IC
V C′

appl

, with V C′′
appl = 0, C ′′ 6= C ′. (3.47)

In this subsection, we will see that although reciprocity is fulfilled analytically,
it is not fulfilled numerically for arbitrary discretization schemes in H-space.
Violating reciprocity and therefore yielding unphysical results presents a major
problem for a simulator and thus we will address and resolve this issue in this
section.

3.5.1 Proof up to the First Harmonic

In order to show that reciprocity must be fulfilled and where it breaks for our
system of equations, we will consider the small signal BE without any scattering,
i.e. S = 0. Furthermore, we are taking the limit vGR → ∞, i.e. the GR-rate Γ
of Eq. (3.31) effectively becomes a Dirichlet boundary condition.

The discretization summarized by Eq. (3.12) does not yield reciprocal devices
in equilibrium. The reason for this is a broken symmetry between BE and PE.
To investigate and resolve this issue, let us write down the discretized ballistic
equations up to first order in the harmonics, since this is sufficient to discover
the origin of the non-reciprocity.

The linearized free streaming term in equilibrium up to the first Fourier
harmonic, including the time-derivative of Eq. (3.20), reads

Lν0(y,H) = Zv
∂

∂y

(
aν0,1(y,H)fν

1
(y,H)

)
+ iωZvfν

0
(y,H) + iωZv

∂fν0 (y,H)

∂H
εν(y),

Lν1(y,H) = Zvaν1,0(y,H)
∂

∂y
fν

0
(y,H) + iωZvfν

1
(y,H).

Note that we do not need to include negative harmonics since they are com-
posed of sine functions (cf. Eq. (2.55)) whose symmetry is consistent with an
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acceleration in the z-direction (cf. Fig. 2.1). An example of this is the Lorentz
force of a magnetic field, however, in this work we do not include such forces.

If we ignore scattering, the BE is given by the set of equations L0 = 0 and
L1 = 0. Eliminating the first harmonic of the distribution function yields

0 =
i

ω
Zv

∂

∂y

[
(
aν0,1(y,H)

)2 ∂

∂y
fν

0
(y,H)

]
+ iωZvfν

0
(y,H)

+ iωZv
∂fν0 (y,H)

∂H
εν(y),

(3.48)

where we used that aν0,1 ≡ aν1,0. Moreover, in equilibrium we have

fν0 (y,H) =
1

Y0
feq(y,H).

Multiplying Eq. (3.48) by 1/Y0 and integrating over H-space yields the 1D
continuity equation of Eq. (3.36) without the scattering or boundary terms, of
course. From there, the current and density can be read off as

jν(y) =
iZ

ωY0

∫
dH

(
aν0,1(y,H)

)2 ∂

∂y
fν

0
(y,H), (3.49)

nν(y) =
Z

Y0

∫
dH

(
fν

0
(y,H) +

∂fν0 (y,H)

∂H
εν(y)

)
.

Note that the expression for the current density of Eq. (3.49) is only valid in
this simplified case.

For our proof of reciprocity, we will start from an equivalent expression of
Eq. (3.33) for the small signal phasor of the terminal current:

IC = −
∫

∂DC

dA ·
[∑

ν

q jν(y) ey δ(x) + iω κ(r)∇V (r)

]
, (3.50)

where the x-component of the conduction current was omitted since it cannot
contribute to the source and drain contact currents due to its orthogonality
on the measure dA (cf. Fig. 2.1). Furthermore, since the gates are separated
from the semiconductor region by oxides and we assume that electrons cannot
penetrate into the oxide (see Sect. 2.3), the electron current cannot contribute to
the gate terminal current. It is assumed that the delta-distribution δ(x) restricts
the 1D conduction current in transport direction in such a way that it originates
and terminates at the contacts along the y-direction. Note that the equivalence
to Eq. (3.33) is due to the surface measure dA being oriented perpendicular to
the x-direction.
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To proceed, we need to define suitable basis functions − or fundamentals
− similar to the Ramo-Shockley test functions that allow us to explicitly write
down the admittance parameters and which are also suitable to manifest the
symmetry of our terms. Since the distribution function and the potential have
different dependencies, we need to define different fundamentals p and q:

fν
0
(y,H) =:

∑

C

pν
C

(y,H) Λν(H) V C
appl, (3.51)

V (r) =:
∑

C

q
C

(r) V C
appl, (3.52)

where a differential equation for p can be obtained straightforwardly by inserting
Eq. (3.51) into Eq. (3.48) and q fulfills the Laplace equation. Here, Λ contains
the whole H-dependence of f

0
when a bias is applied to either source or drain,

so that the fundamentals can fulfill the boundary conditions

p
C

(y,H) = δC,C′ , (x = 0, y) ∈ ∂DC′ , (3.53)

q
C

(r) = δC,C′ , r ∈ ∂DC′ ,

where the boundary condition for the fundamental p means the Kronecker-delta
only yields unity when r is on one of the contacts in the semiconductor region.
However, if a bias is applied to one of the contacts outside the semiconductor
region, the fundamental p can still be non-zero inside the device. In equilibrium,
we can derive the boundary conditions of the small signal distribution functions.
A small perturbation of the applied bias on the k-th contact yields (cf. Eq. (3.30))

fν
0
(yS/D, H)Y0 =

∂

∂V
S/D

appl

fνeq(yS/D, H)V
S/D
appl =

∂

∂H
fνeq(yS/D, H) qV

S/D
appl. (3.54)

Using Eqs. (3.51) and (3.53), we immediately find

Λν(H) =
q

Y0

∂

∂H
fνeq(yS/D, H). (3.55)

Note that Λ does not depend on the source or drain contact since we have
fνeq(yS, H) = fνeq(yD, H) in equilibrium.

Quite similar to Sect. 3.4 about the Ramo-Shockley theorem, we can multiply
the integrand of Eq. (3.50) with the fundamentals without changing the result

IC = −
∫

∂DC

dA ·
[
q
∑

ν

∫
dH

(
pν
C

(y,H)Jffν0(y,H)
)
eyδ(x)

+ iω q
C

(r) κ(r)∇V (r)

]
,
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where we used the current operator

Jffν0(y,H) :=
iZv

ωY0

(
aν0,1(y,H)

)2 ∂

∂y
fν

0
(y,H).

Then, extending the integration to the whole surface and using the Gaussian
integration theorem, while expressing f

0
and V in terms of the fundamentals

given by Eq. (3.51) and Eq. (3.52), respectively, we obtain

IC = −
∑

C′

∫

D
dV

[
q
∑

ν

∫
dH Λν(H)∇pν

C
(y,H) ·

(
JfpνC′(y,H)eyδ(x)

)

+ q
∑

ν

∫
dH Λν(H)pν

C
(y,H)∇ ·

(
JfpνC′(y,H)eyδ(x)

)

+ iωκ(r)∇q
C

(r) · ∇q
C′

(r)

+ iωq
C

(r)∇ ·
(
κ(r)∇q

C′
(r)
)]
V C′

appl

=:
∑

C′

(
I1,C,C′ + I2,C,C′ + I3,C,C′ + I4,C,C′

)
V C′

appl

=:
∑

C′
YC,C′ V

C′
appl,

where we defined an abbreviation of each term in the penultimate step. Fur-
thermore, the definition of the admittance matrix Y arises naturally due to the
proportionality to the applied bias. What is left to show is that reciprocity,
i.e. YC,C′ = YC′,C , is fulfilled.

For the first term we find

I1,C,C′ = −q
∑

ν

iZv

ωY0

∫

D
dV

∫
dH Λν(H)

∂pν
C

(y,H)

∂y

(
aν0,1(y,H)

)2

×
∂pν

C′
(y,H)

∂y
δ(x),

which is clearly symmetric in interchanging C and C ′. The third term I3,C,C′ is
trivially symmetric. However, the second and fourth term, I2,C,C′ and I4,C,C′ ,
are not individually symmetric but only their sum. To see this, let us split the
second term as follows

I2,C,C′ = − q
∑

ν

iZv

ωY0

∫

D
dV

∫
dH Λν(H)pν

C
(y,H)

× ∂

∂y

[
(
aν0,1(y,H)

)2 ∂pνC′(y,H)

∂y
δ(x)

]
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= q
∑

ν

iωZv

Y0

∫

D
dV

∫
dH δ(x)pν

C
(y,H)

[
Λν(H)pν

C′
(y,H)

+
∂fν0 (y,H)

∂H

∫
dx′∆ν

ε(x′, y)q
C′

(x′, y)

]

= q
∑

ν

iωZv

Y0

∫

D
dV

∫
dH pν

C
(y,H)

[
δ(x)Λν(H)pν

C′
(y,H)

− q∂f
ν
0 (y,H)

∂H
|Ψν(r)|2q

C′
(r)

]

=: I ′2,C,C′ + I ′′2,C,C′ ,

where we used Eqs. (3.48) and (3.8), and we executed the integration over x
in the second term and subsequently renamed x′ → x. Obviously I ′2,C,C′ is
symmetric by itself. The fourth term can be expressed using the small signal
PE of Eq. (3.16) as

I4,C,C′ = − q
∑

ν

iωZv

Y0

∫

D
dV q

C
(r)

∫
dH pν

C′
(y,H)Λν(H)|Ψν(r)|2

− 2iqω
∑

ν

∫

D
dV q

C
(r)nν(y)Ψ(r)

∫
dx′∆ν

Ψ(x, x′, y)q
C′

(x′, y)

=: I ′4,C,C′ + I ′′4,C,C′ ,

where we also used Eq. (3.9). Adding I ′′2,C,C′ and I ′4,C,C′ leads to

I ′′2,C,C′ + I ′4,C,C′ = − q
∑

ν

iωZv

Y0

∫

D
dV

∫
dH

×
[
q pν

C
(y,H)

∂fν0 (y,H)

∂H
|Ψν(r)|2q

C′
(r)

+ q
C

(r)pν
C′

(y,H)Λν(H)|Ψν(r)|2
]

= − q2
∑

ν

iωZv

Y0

∫

D
dV

∫
dH

∂fν0 (y,H)

∂H
|Ψν(r)|2

×
[
pν
C

(y,H)q
C′

(r) + pν
C′

(y,H)q
C

(r)

]
, (3.56)

which is evidently symmetric. Note that we used that the energy dependency Λ
of the boundary condition in equilibrium can be expressed as in Eq. (3.55).
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The remaining term reads

I ′′4,C,C′ = −2iqω
∑

ν

∫∫
dy dz nν(y)

∫∫
dx dx′ q

C
(r)Ψν(r)∆ν

Ψ(x, x′, y)q
C′

(x′, y).

Showing that this is symmetric is the same as showing that

0
!

=

∫∫
dx dx′ q

C
(x, y)Ψν(x, y)∆ν

Ψ(x, x′, y)q
C′

(x′, y)

−
∫∫

dx dx′ q
C′

(x, y)Ψν(x, y)∆ν
Ψ(x, x′, y)q

C
(x′, y)

=

∫∫
dx dx′ q

C
(x, y)q

C′
(x′, y)

[
Ψν(x, y)∆ν

Ψ(x, x′, y)−Ψν(x′, y)∆ν
Ψ(x′, x, y)

]
.

holds. But this is always true since

Ψν(x, y)∆ν
Ψ(x, x′, y)−Ψν(x′, y)∆ν

Ψ(x′, x, y)

= − qΨν(x, y)
∑

s 6=ν

Ψs(x′, y)Ψν(x′, y)

εν(y)− εs(y)
Ψs(x, y)

+ qΨν(x′, y)
∑

s 6=ν

Ψs(x, y)Ψν(x, y)

εν(y)− εs(y)
Ψs(x′, y)

= 0,

where the sums run over all subbands s 6= ν of the same valley.
Thus, we proved that our device has to be reciprocal in the continuum. At

the very least up to first order in Fourier harmonics and with Dirichlet boundary
conditions. However, our derivation shows that reciprocity relies on a consistent
formulation of the BE and the PE. In Eq. (3.56) I ′′2,C,C′ stems from inserting the
BE into I2,C,C′ and I ′4,C,C′ stems from inserting the PE into I4,C,C′ . Thereafter
we use Eq. (3.55) to prove the symmetry. If the BE and PE are not consistent
with each other, reciprocity cannot hold in equilibrium.

3.5.2 Restoring Reciprocity in Discretized H-Space

Reciprocity is violated once we discretizeH-space since, after the box-integration,
Eq. (3.54) is given by

fν
0
(yS/D, Hj) (Hj+ −Hj−)

!
=

∫ Hj+

Hj−
dH

∂f0(yS/D, H)

∂H
qV

S/D
appl

= (f0(yS/D, Hj+)− f0(yS/D, Hj−)) qV
S/D
appl.

(3.57)

We cannot fulfill Eq. (3.57) with the discretization described by Eq. (3.28) in
Sect. 3.2. But when Eq. (3.57) does not hold, we cannot get reciprocity, since
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this relation is required to make Eq. (3.56) symmetric. Thus, with a naive
discretization, our device will not be reciprocal numerically.

In order to restore reciprocity, we need to ensure two things. First, we need
to find some suitable representation of the r.h.s. of Eq. (3.57) that will also be
reciprocal in discretized H-space. This representation then needs to be used in
the time-derivative of the BE shown in Eq. (3.21) and (3.22). Second, we need
to substitute this representation in the density of the PE as well, in order for
Eq. (3.56) to be symmetric in discretized H-space.

To commence, let us define the distribution function in terms of an equilib-
rium part feq and a non-equilibrium part, i.e.

fν0 (y,H) =: fνeq(y,H) fνne,0(y,H),

where fne,0 is the coefficient of the zeroth harmonic of the non-equilibrium part.
Then we can formulate the box-integration over the derivative as

∫ Hj+

Hj−
dH

∂fν0 (y,H)

∂H
≈
[
fνne,0(y,Hj+)− fνne,0(y,Hj−)

]
fνeq(y,Hj)

+
∂fνeq(y,H)

∂H

∣∣∣∣
H=Hj

fνne,0(y,Hj) [Hj+ −Hj−] ,

(3.58)

where the distribution function fne,0 on the intermediate points Hj± is evaluated
as in Eq. (3.28). Since the equilibrium distribution function is well known, we
can execute the derivative w.r.t. H on the r.h.s. analytically and obtain the
relation of Eq. (3.57) in equilibrium exactly.

The second condition can be met by replacing the density in the PE of
Eq. (3.16) in such a way that the Eq. (3.56) is still valid in discretized H-
space. To this end, let us write down the small signal density of Eq. (3.18) using
Eq. (3.54) as

nν(y) =
Zv

Y0

∫ ∞

εν(y)
dH

[
fν

0
(y,H) +

∂fν0 (y,H)

∂H
εν(y)

]
. (3.59)

Then, in discretized H-space, we use Eq. (3.58) to box-integrate the second term
on the r.h.s. of Eq. (3.59).

Note that the procedure described in this section yields identical results in
the continuum. Only upon discretization do we find differences such that the
approach described here eliminates discretization artifacts which would lead to
non-reciprocal results.

As a side note, we already used the equality of densities described by the PE
and BE implicitly in the derivation of the Ramo-Shockley theorem of Sect. 3.4.
Thus, the derivation of the terminal current for a discretized system also requires
that we express the small signal density as in Eq. (3.59).
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3.5.3 General Case

Although the previous two sections dealt with reciprocity in the special case of
ballistic transport with Dirichlet boundary conditions and only up to the first
Fourier harmonic, the results are equally applicable to the general case. However,
if we extend the results to the general case, we will find some ambiguity in the
way we formulate our restoration procedure.

For example, once we leave equilibrium conditions, the BE requires us to for-
mulate the derivative of fν1 (y,H) w.r.t. H in the time-derivative. But there is no
mandate on how this term should be expressed since f1 vanishes in equilibrium
anyway and therefore does not influence any conservation laws in equilibrium.
We could in principle also formulate higher orders of harmonics using Eq. (3.58)
but instead we choose to leave them as they are. However, any choice can be
legitimized as convergence of both cases to the continuum values is expected for
reasonably fine H-grids.

Therefore the zeroth harmonic of the even time derivative of Eq. (3.21) will
be replaced with

T̄
ν
0(yi, Hj) = iωZv∆yi

([[
fνne,0(yi, Hj+)− fνne,0(yi, Hj−)

]
fνeq(yi, Hj)

+
∂fνeq(y,H)

∂H

∣∣∣∣
H=Hj

fνne,0(y,Hj)∆H
ν(yi, Hj)

]
εν(yi)

+ ∆Hν(yi, Hj) f
ν
0
(yi, Hj)

)
, (3.60)

whereas the other harmonics remain unaltered. Note that fνne,0(yi, Hj±) has to
be evaluated according to Eq. (3.28).

In any case, once we implement the restoration procedure for reciprocity
of Sect. 3.5.2, we find that the device is reciprocal in equilibrium for arbitrary
numbers of harmonics, for our boundary conditions of Sect. 3.3 with finite GR
recombination velocities, for inhomogeneous devices, and for transport including
scattering.

3.6 Solving for Small Signal Parameters

We can go about solving the small signal problem in two ways. Either we re-
gard our set of equations comprising BE and PE – with the SE included via
perturbation theory – in the same way as we did in the stationary case or we
can transform the system of equations and solve for the admittance parameters
directly. We will refer to the former case as the direct method while the latter
case will be referred to as the adjoint method. Furthermore, we will also briefly
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explain how to compute the admittance parameters of the common-source con-
figuration which will be used exclusively in Chap. 5 about the simulation results.

Our goal is the determination of the admittance parameters:

Y ′C,C′ =
I ′C [f, V , V C′

appl]

V C′
appl

, with V C′′
appl = 0, C ′′ 6= C ′,

where I ′C [f, V , V C′
appl] is the small signal terminal current of the contact C per

length in z-direction when a small signal bias is applied to the contact C ′. Thus
the admittance parameters Y ′ are also given per length in z-direction. We wrote
down the small signal terminal current I ′ as a functional of the small signal
variables in order to bring across the following point: When a small signal bias
is applied to the contact C ′, the expression for the small signal terminal current
is strictly linear in one of either f , V , or V C′

appl, as was shown in Eq. (3.46).
Therefore, we may write down the admittance parameter as

Y ′C,C′ = I ′C

[
f

V C′
appl

,
V

V C′
appl

, 1

]
= I ′C

[
fnorm,C′ , V norm,C′ , 1

]
, (3.61)

where we defined the small signal distribution functions normalized by the small
signal applied bias at the contact C ′.

We will attempt to solve the small signal system of equations only ever with
a small signal bias applied to one contact, which we will call C. Since the
small signal BE of Eq. (3.12) and the small signal PE of Eq. (3.15) with its
boundary condition of Eq. (3.29) are also strictly linear in either f , V , or V C

appl,

we can divide both the BE and PE by V C
appl and obtain equations for fnorm,C

and V norm,C . In the remainder of this section we will refer to the system of BE
and PE in matrix form as

AAC xC = bC , (3.62)

where AAC ∈ CN×N contains the BE and PE, the vector

xC =
(
fnorm,C V norm,C

)t
(3.63)

contains the normalized distribution function and potential for a bias applied to
the contact C, and bC contains the term proportional to the applied bias of the
GR rate of Eq. (3.31), as well as the small signal variant of the normalized PE
boundary condition given by

V norm,C(r)

∣∣∣∣
r∈∂DTG

= δC,TG, V norm,C(r)

∣∣∣∣
r∈∂DBG

= δC,BG.
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3.6.1 Direct Method

We want to directly determine the solution xC of Eq. (3.62) when a small signal
bias is applied to the contact C. Since Eq. (3.62) is a linear equation, we can
avail ourselves of any linear solver to obtain the solution directly. However, it
is prudent to employ the same procedure shown in Sect. 2.5.2 to remove the
odd distribution functions in order to reduce the computational load signifi-
cantly. Using the same transformation matrix S and compression matrix Ce as
in Sect. 2.5.2, we find

Ce S A
ACCte︸ ︷︷ ︸

=:AAC
e/e

Ce x
C

︸ ︷︷ ︸
=:xCe

= Ce S bC︸ ︷︷ ︸
=:bCe

, (3.64)

where AAC
e/e ∈ Cn×n only contains the even rows and columns of the BE as well

as the full PE, xCe ∈ Cn contains the even distribution functions and the whole
potential, and bCe ∈ Cn contains the even rows of the BE but the full PE for a
bias applied to the contact C. Equation (3.64) is a linear sparse array system
of equations which we solve with ILUPACK [68].

Once we know the distribution functions with even harmonics and the po-
tential, we can use

fnorm,C
α=(ν,yi+,Hj ,m)

∣∣∣∣
m odd

= − 1

AAC
α,α



NBE∑

β=1
β 6=α

ADC
α,βf

norm,C
β

+

NPE∑

b=1

AAC
α,NBE+bV

norm,C
b


 ,

(3.65)

to determine the distribution functions with odd harmonics. The reasoning be-
hind Eq. (3.65) is completely analogous to Eq. (2.112), however, the boundary
term bCα does not contribute since it is zero except for coordinates at which
boundary conditions apply. But there are no boundary conditions in odd equa-
tions (cf. Sect. 2.4.5).

Once the normalized distribution functions and the potential are known, we
can use the expression for the small signal terminal current of Eq. (3.46) to
compute the admittance parameters according to Eq. (3.61). In addition, we
can also compute other quantities such as the small signal density or the small
signal current density.

3.6.2 Adjoint Method

In case we are only interested in the admittance parameters, we can use the
adjoint method to compute them directly [105]. But using the adjoint method
has no advantage by itself. It even prevents us from computing other quantities
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such as small signal densities – which would be possible with the direct method
of the previous section. However, it will open up the possibility to compute
the noise and admittance parameters in one step as will be shown later on in
Sect. 4.8.

In order to derive a system of equations which can be solved directly for the
admittance parameters, let us write down a representation for the admittance
parameters with the help of a projection operator:

YC′,C = P t
I′
C′
xC − iωC′C′,C . (3.66)

Here, PI′
C′
∈ CN is a vector chosen in such a way that Eq. (3.66) is equivalent

to Eq. (3.61), i.e. the elements of PI′
C′

are the coefficients multiplying the dis-

tribution function and potential in the terminal current of Eq. (3.46). Note that
the capacitance matrix C′C′,C appears without a sum over all contacts since we
assume that we only apply a small signal bias at the contact C. Furthermore,
the applied bias does not appear since it is normalized to unity as in Eq. (3.61).

What complicates the matter in our case is that we want to solve the reduced
system of equations which only contains the even equations. To this end, let us
split the distribution functions into even and odd parts as

xC = Cte x
C
e + (CBE

o )t fnorm,C
o

, (3.67)

where Ce is given by Eq. (2.110), the odd compression matrix for the BE CBE
o ∈

RNBE/2×NBE can be defined in analogy to Eq. (2.99) with

CBE
o =

m = 0 m = 1 m = 2 m = 3 · · ·


0 1 0 0 · · · 0
0 0 0 1 · · · 0
...

. . .
...




m = 1
m = 3

...

, (3.68)

and fnorm,C
o

∈ CNBE/2 contains only the odd distribution functions. Note that

the potentials are contained in xe. The transposed compression matrices Cte
and (CBE

o )t in Eq. (3.67) insert zeros where the distribution functions of odd
and even Fourier harmonics should be, respectively, such that the dimensions
add up.

Furthermore, it is convenient to express Eq. (3.65) in matrix form as

fnorm,C
o

= −diag
(
AAC,BE
o/o

)−1
offdiag

(
AAC,BE
o/e

)
xCe , (3.69)

where AAC,BE
o/o ∈ CNBE/2×NBE/2 only contains the rows and columns of odd har-

monics of the BE and diag(AAC,BE
o/o ) contains only the main diagonal elements
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of AAC,BE
o/o . Moreover, AAC,BE

o/e ∈ CNBE/2×n contains only the rows of odd har-
monics of the BE while the columns contain the BE of even harmonics as well
as the PE. Lastly, offdiag

(
AAC,BE
o/e

)
contains only the off-diagonal elements of

AAC,BE
o/e .

Inserting Eqs. (3.67) and (3.69) into Eq. (3.66) yields

YC′,C = P t
I′
C′

[
Cte − (CBE

o )tdiag
(
AAC,BE
o/o

)−1
offdiag

(
AAC,BE
o/e

)]
xCe − iωC′C′,C .

Using Eq. (3.64) to formally replace xCe =
(
AAC
e/e

)−1
bCe , we find

YC′,C = P t
I′
C′

[
Cte − (CBE

o )tdiag
(
AAC,BE
o/o

)−1
offdiag

(
AAC,BE
o/e

)](
AAC
e/e

)−1
bCe

− iωC′C′,C

= (bCe )t
((

AAC
e/e

)t)−1

×
[
Ce − offdiag

(
AAC,BE
o/e

)t
diag

(
AAC,BE
o/o

)−1
CBE
o

]
PI′

C′
− iωC′C′,C

=: (bCe )t yC
′

e − iωC′C′,C . (3.70)

Thus, we can determine yC
′

e by solving

(
AAC
e/e

)t
yC
′

e =

[
Ce − offdiag

(
AAC,BE
o/e

)t
diag

(
AAC,BE
o/o

)−1
CBE
o

]
PI′

C′
, (3.71)

which utilizes the same matrix as the initial system of equations of Eq. (3.64),
albeit in transposed form.

Once we solved Eq. (3.71) for yC
′

e with a sparse linear equation solver such
as ILUPACK [68], we can determine the admittance parameters using Eq. (3.70).

3.6.3 Common-Source Configuration

MOSFETs are usually operated in the common-source configuration. The device
of Fig. 2.1 has four contacts: a source (S), a drain (D), a top gate (TG), and a
bottom gate (BG). In the common-source configuration, we ground the source
and short the two gates. Then, we are left with two contacts, the drain (D) and
the shorted gates (G) and any voltage differences are measured w.r.t. the source
contact.
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Previously in this chapter, we showed how to compute the full 4× 4 admit-
tance matrix which satisfies




I ′TG

I ′BG

I ′D
I ′S


 =




Y ′TG,TG Y ′TG,BG Y ′TG,D Y ′TG,S

Y ′BG,TG Y ′BG,BG Y ′BG,D Y ′BG,S

Y ′D,TG Y ′D,BG Y ′D,D Y ′D,S
Y ′S,TG Y ′S,BG Y ′S,D Y ′S,S







V TG
appl

V BG
appl

V D
appl

V S
appl


 . (3.72)

The goal of this section is to see how the full admittance matrix relates to the
admittance matrix in common source configuration.

Grounding the source contact means V S
appl = 0 and we are not interested in

the current that flows through the source contact. Therefore, we may drop the
columns and rows associated with the source contact. Moreover, the gates are
shorted which means V TG

appl = V BG
appl =: V G

appl and therefore we find



I ′TG

I ′BG

I ′D


 =



Y ′TG,TG Y ′TG,BG Y ′TG,D

Y ′BG,TG Y ′BG,BG Y ′BG,D

Y ′D,TG Y ′D,BG Y ′D,D





V G

appl

V G
appl

V D
appl




=



Y ′TG,TG + Y ′TG,BG Y ′TG,D

Y ′BG,TG + Y ′BG,BG Y ′BG,D

Y ′D,TG + Y ′D,BG Y ′D,D



(
V G

appl

V D
appl

)
.

Since we want to know the total current that runs through the gates, we can
add the two rows referring to the top and bottom gates as I ′G := I ′TG + I ′BG

which yields

(
I ′G
I ′D

)
=

(
Y ′TG,TG + Y ′TG,BG + Y ′BG,TG + Y ′BG,BG Y ′TG,D + Y ′BG,D

Y ′D,TG + Y ′D,BG Y ′D,D

)(
V G

appl

V D
appl

)

=:

(
Y ′GG Y ′GD

Y ′DG Y ′DD

)(
V G

appl

V D
appl

)
,

where we defined the admittance parameters Y ′GG, Y ′GD, Y ′DG, and Y ′DD of the
common-source configuration.
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Chapter 4

Noise

The main result of this work is the calculation of noise in a nanoscale nMOSFET.
In this chapter, we will introduce the Langevin-source approach which is the
basis to formulate a system of equations for the Green’s functions. The Green’s
functions will then be utilized to compute the power spectral density (PSD) of
the terminal currents, which is a measure for the amount of noise.

The implementation of the noise calculation has some unexpected twists to
it – similar to the small signal analysis of Chap. 3. However, with the previ-
ous chapter, we already laid the groundwork to properly deal with noise. The
derivation of the terminal current via the Ramo-Shockley theorem only needs to
be modified minimally in order to apply to the framework of Green’s functions.
Furthermore, the considerations of Sect. 3.5.2, where we needed to take great
care during the discretization of the time-derivative of the Boltzmann equation
(BE) as well as the density in the Poisson equation (PE), can be reused in this
chapter.

Additionally, caution has to be exercised in dealing with degeneracy. While
the degeneracies of the BE in Sect. 2.4.6 can be dealt with on an intuitive level
by considering only the dynamics of one state in a set of degenerate states and
multiplying the resulting observables by appropriate multiplicities, we would run
into trouble if we were to continue this kind of reasoning for the Green’s function
equations. Therefore, we have to derive the multiplicities more rigorously and
we will find that they appear in different and unexpected places.

As was already hinted at in Sect. 3.6.2 about the adjoint method for the
admittance parameters, we are in dire need of the adjoint method for the com-
putation of the Green’s functions of noise. With unlimited resources, we could
simply compute the Green’s functions of fluctuations in the distribution func-
tions. However, the size of our problem would make this approach computa-
tionally prohibitively expensive. Instead, we use the adjoint method to derive
a system of equations that solves for the Green’s functions of terminal currents

109
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directly. This reduces the computational cost to a level comparable to the small
signal analysis.

In fact, due to the similarity of the linear systems for the admittance pa-
rameters and the Green’s functions of terminal currents, we can reduce the total
effort of characterizing the device even more by using the results for the Green’s
functions to compute the admittance parameters.

The Green’s functions of terminal currents are all we need to compute the
PSDs of terminal currents. And from the PSDs and the admittance parameters,
we can compute all noise related quantities in the linear response regime.

4.1 Introduction

In this chapter we will introduce the methods to calculate the noise for a coupled
PE, Schrödinger equation (SE), and BE system by a Langevin-source approach.
But let us first understand what noise actually is. When we measure any observ-
ables of an electronic device, we can see that the observable fluctuates around
an average value. Say, we measure the observable X of an ergodic system, over
some time period much longer than any intrinsic relaxation times, then we will
find that it has some average value

〈X(t)〉 = lim
∆t→∞

1

∆t

∫ ∆t/2

−∆t/2
dt X(t).

And therefore we can define the fluctuations as the miniscule deviations around
the average value:

δX(t) = X(t)− 〈X〉.

Circuit designers are particularly interested in the fluctuations of terminal
currents and voltages. But since it is possible to compute the fluctuations of
voltages from the terminal current fluctuations and vice versa, it suffices to
compute either of the two. We will be aiming at the computation of the terminal
current fluctuations because it suits our approach better.

A typical example of terminal current fluctuations is shown in Fig. 4.1, where
the terminal current is measured over a time period. Since the behavior of the
current is a stochastic process, we need to describe it in terms of its non-random
statistical characteristics, i.e. averages and correlation functions. The PSD is
a generally useful quantity and sufficient to compute noise related quantities
like the minimum noise figure, the gate and drain excess noise factors, and
the cross-correlation coefficent. It can be derived with the Wiener-Khinchin
theorem [106, 107] which states that the PSD is twice the Fourier transform of
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t

I

Figure 4.1: A terminal current (black line) fluctuating around an average
value (red line).

the correlation function. Thus, if the correlation function of two macroscopic
quantities Xα and Xβ is given by

〈δXα(t1) δXβ(t2)〉 = lim
∆t→∞

1

∆t

∫ ∆t/2

−∆t/2
dt δXα(t1 + t) δXβ(t2 + t), (4.1)

the PSD can be expressed as

Pαβ(ω) = 2

∫ ∞

−∞
dt eiωt 〈δXα(t) δXβ(0)〉, (4.2)

where we used that 〈δXα(t1) δXβ(t2)〉 = 〈δXα(t1 − t2) δXβ(0)〉 is valid in a sta-
tionary system. When α = β, Eq. (4.1) is often referred to as the autocorrelation
function.

In order to understand what the PSD means, let us first try to make sense of
the correlation function appearing on the r.h.s. of Eq. (4.2). Three possible cases
are illustrated in Fig. 4.2, where we assumed t0 > 0 without loss of generality. If
we have two random variables Xα and Xβ, which might be terminal currents or
densities or even microscopic quantities like the distribution functions, they are
considered correlated if a positive fluctuation in Xβ at time t = 0 – say a sudden
increase above the average value – is followed by a similar positive fluctuation in
Xα at time t = t0 (Fig. 4.2A). In that case, the integral of Eq. (4.1) is positive
and the correlation function itself becomes positive. Anticorrelation means that
a positive fluctuation in Xβ at time t = 0 is usually followed by a negative
fluctuation in Xα at time t = t0, or vice versa, in which case the correlation
function becomes negative (Fig. 4.2B). The random variables are uncorrelated,
i.e. the correlation function vanishes, if a fluctuation in Xβ is usually not followed
by a fluctuation in Xα (Fig. 4.2C).

The PSD, as the Fourier transform of the correlation function, represents
correlations occurring at certain frequencies. So if we have two positively corre-
lated functions with a time of about t0 between the signals as in Fig. 4.2A, we
will find that the PSD of Eq. (4.2) is positive at a frequency of about ω = 2π/t0.
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A:

B:

C:

t = 0 t = t0

t

δXα(t)

δXβ(t)

Figure 4.2: The correlation function 〈δXα(t0) δXβ(0)〉 of two random vari-
ables can be positive, negative, or zero when a typical response of a signal
at t = 0 looks as in A, B, or C, respectively.

Without going into too much detail, we want to mention some properties of
the PSD of Eq. (4.2). An obvious property of the autocorrelation function is
that it is symmetric under time-reversal in stationary conditions, i.e.

〈δXα(t) δXα(0)〉 = 〈δXα(−t) δXα(0)〉.

It follows that the PSD of Eq. (4.2) is strictly real and positive semidefinite,

Pαα(ω) ≥ 0. (4.3)

A cross-correlation between some observables α and β can give rise to real and
imaginary parts of the PSD, but only in the case where the cross-correlation is
totally antisymmetric as

〈δXα(t) δXβ(0)〉 = −〈δXα(−t) δXβ(0)〉,

will we find a purely imaginary PSD.
In electronic devices, we are usually interested in the PSDs of the contact

currents, e.g. the PSD of the drain or gate terminal currents of a MOSFET or
the PSD of their cross-correlation. Thus, what determines the amount of noise
we measure in a contact is governed by the random processes carriers experience
within the device which only consist of scattering processes as well as generation
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and recombination (GR) processes. Due to historical reasons, there exist many
names for noise but they all arise microscopically from scattering or GR [51].

There are three main historical types of noise we want to introduce since we
will refer to them later on. The first one is Johnson-Nyquist noise [108, 109],
which is also known as thermal noise. Scattering in an electronic device can be
macroscopically summarized as a conductivity. Near equilibrium we find that
the PSD of the current I through some device is proportional to the conductivity
and temperature as

PII = 4kBT Re(Y ), (4.4)

where Y is the self-admittance of the contact the current I is flowing through.
Carriers move around the device even if the net current vanishes. Their scat-
tering with the surrounding lattice of atoms is dependent on the temperature
since lattice vibrations increase with temperature. Every device exhibits ther-
mal noise in equilibrium. Therefore thermal noise is basically the noise floor at
a given temperature which cannot be avoided. It is often the predominant noise
deteriorating the signal-to-noise ratio in analog circuits.

The second type is shot noise and it is the noise occurring when carriers
surpass a potential barrier [51, 110, 111]. The idea behind shot noise is that
current actually consists of individual carriers which need to surpass a potential
barrier one by one. Such a process – also known as a Poisson process – leads to
fluctuations and it can be derived that the PSD is given by

PII = 2qI, (4.5)

where I is the current flowing through the device. Shot noise is often drowned
by thermal noise but it can also become significant, especially when the current
is small such as in MOSFETs in the subthreshold. Equation (4.5) suggests that
shot noise is white, but in real devices it actually starts decreasing at very high
frequencies, similar to thermal noise.

The third and last type of noise we want to touch on is 1/f -noise or flicker
noise. As the name suggests, it is inversely proportional to the frequency and
therefore it becomes the dominant noise source in the low frequency domain.
Due to its ubiquity, a comprehensive explanation has remained elusive [51] and
we will disregard it in this work. However, we want to note that we are going
to compute frequency ranges which would typically involve flicker noise. We do
this in order to reasonably compare different devices (cf. Sect. 5.4) but we urge
the reader to keep in mind that real devices would exhibit flicker noise.

4.2 Langevin-Source Approach

We will use the Langevin-source approach (see e.g. [51]) to determine the noise in
our device. The Langevin-source approach is based on the idea that we introduce
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small noise sources into our equations. These Langevin-source terms represent
small fluctuations that modulate the distribution functions and potential as

fν(y,k) −→ fν(y,k) + δfν(y,k, t),

V (r) −→ V (r) + δV (r, t),

where f and V are the solutions to the stationary problem which are assumed to
be known quantities. Analogously to the linearization in the small signal analysis
of Sect. 3.1, we find the linearized BE for the fluctuations in the distribution
function to be given by its variation

[
δFBE

]ν
(y,k, t) =

∂

∂t
δfν(y,k, t) +

1

~
δF ν(y, t)

∂

∂ky
f(y,k)

+
1

~
F ν(y)

∂

∂ky
δf(y,k, t) + vν(k)

∂

∂y
δf(y,k, t)

− δSν(y,k, t)− δΓν(y,k, t)

= ξνBE(y,k, t), (4.6)

where ξBE is the Langevin-source term in the BE. Since the Langevin-source
elicits a small change in the distribution function, we will often refer to it as a
fluctuation in the distribution function. The variation of the force is given by

δF ν(y, t) = − ∂

∂y
δεν(y, t) (4.7)

and δεν(y, t) is assumed to be the quasistationary effect of a variation of the
potential on the subband energy and therefore it is given by Eq. (2.10) even
in the time-dependent case. Regarding the scattering term as a functional of
the distribution function, subband energies, and wave functions, we can use the
functional derivative to obtain

δSν(y,k, t) =
∑

ν′

∫
dy′
∫

d2k′

(2π)2

δSν(y,k)

δfν(y′,k′)
δfν(y′,k′, t)

+
∑

ν′

∫
dy′

δSν(y,k)

δεν′(y′)
δεν

′
(y′, t)

+
∑

ν′

∫
dx′
∫
dy′

δSν(y,k)

δΨν′(r, t)
δΨν′(r′, t).

Note that the functional derivative w.r.t. a function comprises the respective
integrals and sums over all variables of the function. In the continuum, we
would find that the integral w.r.t. y′ drops out since all scattering terms are
local. However, in the discretized case we need to use an averaging scheme for
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the scattering term on the adjoint grid points (see Eq. (2.82)) and therefore
multiple grid points contribute. For this reason, we will leave the integral over
y′ unevaluated.

Assuming a quasistationary perturbation of the wave function, we can use
Eq. (2.11) for the variation of the wave function and therefore we get

δSν(y,k, t) =
∑

ν′

∫
dy′
∫

d2k′

(2π)2

δSν(y,k)

δfν(y′,k′)
δfν(y′,k′, t)

+

∫
dx′
∫
dy′

δSν(y,k)

δV (r)
δV (r′, t).

Finally, the variation of the GR rate can be treated similarly to find

δΓν(y,k, t) =
∑

ν′

∫
dy′
∫

d2k′

(2π)2

δΓν(y,k)

δfν(y′,k′)
δfν(y′,k′, t).

Equation (4.6) is often referred to as the Langevin-Boltzmann equation (LBE).
Likewise, the PE reads

δFPE(r) = ∇ · (κ(r)∇δV (r, t))− qδn(r, t) = ξPE(r, t), (4.8)

where ξPE is the Langevin-source term of the PE and the variation of the density
is given by

δn(r, t) =
∑

ν

∫
d2k

(2π)2

[
δfν(y,k, t)|Ψν(r)|2 + 2fν(y,k)Ψν(r)δΨν(r, t)

]
(4.9)

with a real wave function. Since the Langevin-source in the PE causes a small
change in the potential, we will refer to it as a fluctuation in the potential.

The Langevin-source terms ξBE and ξPE need not necessarily be known. In
particular, we will see that since we are only interested in the PSD of the terminal
currents, all we need to know is the PSD of these Langevin-sources. These are
nothing else but the microscopic origin of the fluctuations which is given by the
scattering processes. The details for the computation of the PSDs are given in
Sect. 4.6.

In order to solve Eqs. (4.6) and (4.8), we are going to use the Green’s func-
tion approach. The Green’s function equation of the LBE can be obtained by
replacing the variations of functions by their corresponding transfer functions
and replacing the Langevin-source term by an appropriate delta-distribution as
well as Fourier transforming the equation into the frequency domain:

iω
(
Gf
)ν,ν′

(y,k; y′,k′) +
1

~
(
GF
)ν,ν′

(y; y′,k′)
∂

∂ky
f(y,k)
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+
1

~
F ν(y)

∂

∂ky

(
Gf
)ν,ν′

(y,k; y′,k′) + vν(k)
∂

∂y

(
Gf
)ν,ν′

(y,k; y′,k′)

−
(
GS
)ν,ν′

(y,k; y′,k′)−
(
GΓ
)ν,ν′

(y,k; y′,k′) = δν,ν′(2π)2δ(k − k′)δ(y − y′).
(4.10)

where Gf is the Green’s function of the distribution function, GF is the Green’s
function of the force, and so on. Note that the above equation describes Green’s
functions only at the frequency ω, however, we omitted the frequency index to
keep the notation less burdensome. Equation 4.10 is analogous to the Green’s
function equation of the LBE found in Ref. [60]. But in our case we only con-
sider a 2D k-space and our z-direction of the spatial coordinates is homogeneous,
which means we can integrate it out. Thus, the Green’s function of the distribu-
tion function has units [s m] where the seconds stem from the Fourier transform
and meters due to the integration over some length ∆z in the homogeneous z-
direction. The meaning of Gf is therefore the cumulative response in an interval
∆z to the appearance of a carrier.

We can further deconstruct the Green’s functions until we arrive at an equa-
tion described solely by the Green’s functions of the distribution function and
potential. Take, for example, the Green’s function of the force. It can be ex-
pressed using Eq. (4.7) as

(
GF
)ν,ν′

(y; y′,k′) = − ∂

∂y

(
Gε
)ν,ν′

(y; y′,k′),

with the Green’s function of the subband energy Gε, which in turn can be
expressed using Eq. (2.10) as

(
Gε
)ν,ν′

(y; y′,k′) = −q
∫
dx |Ψν(x)|2

(
GV
)ν′

(r; y′,k′).

Note how the Green’s function equations can be derived by simply following
along the variations of functionals.

Green’s functions quantify the response of a system. Let there be a minis-
cule fluctuation in the distribution function in the valley and subband ν ′ at
position y′ and wave vector k′. Then, the Green’s function of the distribu-

tion function
(
Gf
)ν,ν′

(y,k; y′,k′) will tell us the response of the distribution
function in the valley and subband ν at position y and wave vector k. If, for
example, (ν, y,k) = (ν ′, y′,k′), the distribution function is given exactly by
the fluctuation and therefore the Green’s function is given by the divergence of
delta-distributions w.r.t. each of the coordinates. Further away from the fluctu-
ation, we usually also see a weaker response to the fluctuation and thus Green’s
functions become smaller.
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Other Green’s functions behave similarly. The Green’s function of the po-

tential
(
GV
)ν′

(r; y′,k′) will tell us the response of the electric potential V at
the position r if there is a fluctuation in the distribution function at (ν, y′,k).
Moreover, the Green’s function of the force GF will tell us the response of the
force to fluctuations in the distribution function, the Green’s function of the
scattering rate GS will tell us the response of the scattering rate, and so on.

The Green’s function equation for the PE can be obtained analogously as

δ(r − r′) = ∇r ·
(
κ(r)∇rG

V (r; r′)
)
− q

∑

ν

(
Gn
)ν

(y; r′)|Ψν(r)|2 (4.11)

− 2q
∑

ν

nν(y)Ψν(r)
(
GΨ
)ν

(r; r′). (4.12)

Note that the Green’s functions shown here are different as they describe how
quantities respond to a Langevin-source in the PE at position r′. However, what
we are actually interested in is the response to fluctuations in the distribution
function. Recall that the PE is coupled through the density to the BE, therefore
the PE of Green’s functions is coupled to the LBE of Green’s functions via the
Green’s function of distribution functions. This means the density responds to
fluctuations at (ν ′, y′,k′) in the distribution function as in Eq. (4.9) and thus(
Gn
)ν′

(r; y′,k′) must obey the PE as

0 = ∇r ·
(
κ(r)∇r

(
GV
)ν′

(r; y′,k′)
)
− q

∑

ν

(
Gn
)ν,ν′

(y; y′,k′)|Ψν(r)|2

− 2q
∑

ν

nν(y)Ψν(r)
(
GΨ
)ν,ν′

(r; y,k′),

where there is no Langevin-source in the PE, since it is contained in the LBE.
Conversely, the PE influences the LBE which means a PE with a Langevin-
source will elicit responses of the distribution functions. Hence, we also have a
BE of Green’s functions where the Langevin-sources are located in the PE.

Here, the Green’s function of the wave function is given by perturbation
theory using Eq. (2.11) and the Green’s function of the density for either a
Langevin-source in the LBE or in the PE:

(
Gn
)ν

(y; ·) =

∫
d2k

(2π)2

(
Gf
)ν

(y,k; ·),

where · denotes either the coordinates (ν ′, y′,k′) of a Langevin-source in the
LBE or the coordinates r′ of a Langevin-source in the PE. It is important to
keep in mind that the Green’s functions represent the response of the system to
an insertion of a carrier into a single state. Therefore, the Green’s function of
the density needs to acknowledge that this state may, for example, either be a
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spin up or a spin down state, but never both at the same time. It follows that
the Green’s function of the density – and also of all other quantities – does not
contain multiplicities in the case of degeneracy. We will postpone the detailed
discussion and possible simplifications of the LBE and PE system in the case of
degeneracy to Sect. 4.7.

Now let us set up a system of equations that can be solved in order to find
the Green’s functions Gf and GV . To this end, we need to use the Herring-Vogt
transformation, the projection onto equi-energies and Fourier harmonics, the
H-transformation, and the discretization (see Sect. 2.4.4). Bear in mind that
the H-transformation and the subsequent box-integration introduces additional
fluctuating quantities, since the lowest H-boxes depend on the subband energy.
Therefore, we have to perform the aforementioned transformations and the box-
integration before we compute the variation of the LBE. However, from the
derivation of the PE and LBE Green’s function equations, it is obvious our
problem is analogous to the linearization around a stationary state described in
Sect. 3.1 for the small signal analysis. Thus, we can treat the first set of variables
of the Green’s functions – the unprimed ones – completely identical to the way
we treated the small signal BE and PE of Eqs. (3.12) and (3.15). The second
set of variables of the Green’s functions can also be Herring-Vogt transformed,
projected onto equienergy surfaces and Fourier harmonics, H-transformed, and
discretized. But this amounts to trivially replacing (y′,k′) → (yi′ , Hj′ ,m

′) and
r′ → (xk′ , yi′) in all the Green’s functions.

Thus, reusing the derivations on the time-derivative of Sect. 3.2 and the
restoration of reciprocity of Sect. 3.5.2, we obtain the system of equations for
the Green’s functions analogous to Eqs. (3.12) and (3.15):

GTαγ +
∑

β

∂FBE
α

∂fβ
Gfβγ +

∑

b

(∑

k

∂FBE
α

∂εk

∂εk

∂Vb
+
∑

`

∂FBE
α

∂Ψ`

∂Ψ`

∂Vb

)
GVbγ = δαγ ,

(4.13)

∑

β

∂FPE
a

∂fβ
Gfβγ +

∑

b

∂FPE
a

∂Vb
GVbγ = δaγ ,

(4.14)

where GT is the Green’s function of the time-derivative defined in analogy to the
time-derivative in the small signal case of Sect. 3.2, complete with the reciprocity
conserving discretization of Sect. 3.5.2, where the density in the PE is defined
analogously to Eq. (3.59). The indices α and β are defined as in Eq. (2.86) as
aggregate indices of the BE and the indices a and b are defined as in Eq. (2.105)
as aggregate indices of the PE. The index γ designates the location of Langevin-
sources in a Green’s function and since we’ve seen that there can be Langevin-
sources in both the LBE and the PE, the index must run over both the BE
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indices and the PE indices as

γ =

{
α′, for γ ≤ NBE,

a′, for γ > NBE,
(4.15)

where α′ denotes an index like α running over all variables of the BE and a′ de-
notes an index like a running over all variables of the PE. Hence, the Kronecker-
delta on the r.h.s. of Eq. (4.13) can only yield unity when γ ≤ NBE, i.e. when the
Langevin-source is in the LBE. Conversely, the Kronecker-delta on the r.h.s. of
Eq. (4.14) can only yield unity when the Langevin-source is in the PE.

For later convenience, we want to represent Eqs. (4.13) and (4.14) in matrix
form as

AACG = B, (4.16)

where G ∈ CN×N is the matrix containing all Green’s functions, B ∈ RN×N
is the matrix containing the Kronecker-deltas of the Langevin-sources, and
AAC ∈ CN×N is the same matrix as in the small signal case of Eq. (3.62).
Note that Eq. (4.16) also contains the boundary conditions discussed in the fol-
lowing section and therefore B is not a unit matrix – although it is quite close
to being one.

Note that the system of Green’s function equations of Eq. (4.16) needs to be
set up in an identical way to the small signal case. If we did not use AAC in the
Green’s function equation but forego the restoration procedure for reciprocity
of Sect. 3.5.2, we would not be able to verify the consistency of the noise and
small signal analyses by the Nyquist-theorem as will be shown in Sect. 5.4.2.

In theory, we could solve Eq. (4.16) directly and compute the Green’s func-
tions of all observables from Gf and GV . But this approach is computationally
too expensive since the number of variables G in the discretized system of the
Green’s functions is the number of distribution functions and potentials squared.
It is also wildly inefficient when all we are interested in are the Green’s func-
tions of terminal current fluctuations to compute the PSD of terminal currents
(cf. Sect. 4.6). Therefore, we will use the adjoint method discussed in Sect. 4.5,
in order to solve for the Green’s functions of terminal currents directly. This
method is quite similar to the adjoint method of the small signal analysis of
Sect. 3.6.2. However, before that, we need to discuss the boundary conditions of
the Green’s function system and how the Green’s functions of terminal current
fluctuations can be computed via the Ramo-Shockley theorem.

4.3 Boundary Conditions

The boundary conditions of Green’s function equations are chosen such that
there cannot be a response to Langevin-sources where Dirichlet boundary con-
ditions apply. For our case, this means that we have to set the Green’s functions
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in the PE to zero where Dirichlet boundary conditions apply, i.e. on the top and
bottom gates.

Recall that we used Eq. (3.29) to set the top and bottom gate small signal
biases. Analogously, we can use

(
GV
)ν′

(r; y′,k′)

∣∣∣∣
r∈∂DTG/BG

= 0, (4.17)

GV (r; r′)

∣∣∣∣
r∈∂DTG/BG

= 0, (4.18)

which translates to the discretized equations as

GVaγ

∣∣∣∣
a=(xk,yi)∈∂DTG/BG

= 0. (4.19)

The source and drain contacts use Neumann boundary conditions in the PE
which are automatically applied by the finite volume discretization approach.

The LBE, just as the BE also only uses Neumann boundary conditions which
are automatically applied by the box-integration method. The GR term Γ in
the small signal case contains a term proportional to V C

appl that goes to the
r.h.s. of Eq. (3.12). However, since no small signal bias is applied in the noise
calculation, this term does not exist.

Therefore, only the rows of coordinates on the top and bottom gates of the
PE in Eq. (4.16) need to be replaced to satisfy Eq. (4.19). But this has also been
done in the small signal case and therefore AAC for the Green’s function equation
is truly identical to the small signal equation. On the r.h.s., B is essentially a
unit matrix due to the Langevin-sources on the main-diagonal, except for where
the Dirichlet boundary conditions of the PE apply.

In the remainder of this work, we will always assume that the boundary
conditions are contained in the Green’s function system of Eq. (4.16).

4.4 Ramo-Shockley Theorem

Once again we aim to use the Ramo-Shockley theorem to express the terminal
current as a volume integration over the device. In Sect. 3.4 we already showed
how this can be achieved for the small signal current. In this section, we apply
the same ideas to obtain the corresponding expression for the Green’s functions
of terminal currents.

Let us start out from the Green’s function expression corresponding to
Eq. (3.33) for the terminal current in the frequency domain:

GICζ = −
∫

∂DC

dA ·
[
q
∑

ν

GJν

ζ (r) + iω κ(r)∇rG
V
ζ (r)

]
. (4.20)
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While the first set of coordinates of the Green’s functions remain explicit, we
abbreviated the second set of coordinates with the index ζ ∈ {(ν ′, y′,k′)}∪{r′}.
The Green’s function of the terminal current GICζ is the response of the terminal
current IC caused by a fluctuation in the distribution function or a fluctuation
in the potential, depending on the value of ζ, which runs over both BE and PE
indices.

The Green’s function of the 2D conduction current is given analogous to
Eq. (3.34) as

GJν

ζ (r) = G
Jνy
ζ (r)ey + G

Jν⊥
ζ (r),

where the y-component can be derived in analogy to Eq. (3.35) as

G
Jνy
ζ (r) = Gj

ν

ζ (y)|Ψν(r)|2 + 2jν(y) Ψν(r) GΨν

ζ (r) (4.21)

with the Green’s function of the wave function given similar to Eq. (3.9) by
perturbation theory as

GΨν

ζ (x, y) =

∫
dx′∆ν

Ψ(x, x′, y)GVζ (x′, y).

Since the Green’s function equations behave exactly like the linearization
around the stationary state for the small signal terminal current, we will obtain
an analogous result, except for one distinction: The Green’s functions obey a
different continuity equation due to the presence of the Langevin-source. Inte-
grating Eq. (4.10) over k-space, we obtain

∂

∂y
Gj

ν

ζ (y) + iω Gn
ν

ζ (y)−GSνζ (y)−GΓν

ζ (y) = δν,ν′δ(y − y′),

where the primed coordinate y′ belongs to the BE part of the second set of
coordinate ζ. Bear in mind that the Langevin-source in the BE only exists as
long as ζ runs over BE indices.

The Langevin-source impacts the derivation of the terminal current twofold.
First, since it is singular, it contributes to the current generated in the source
and drain contacts as described by Eq. (3.39). Here, we find in the case of the
Green’s functions
∫

∂D
dA·

(
hC(r)G

Jνy
ζ (r)ey

)

=

∫

∂D
dA · eyhC(r)

(
Gj

ν

ζ (y)|Ψν(r)|2 + 2jν(y)Ψν(r)GΨν

ζ (r)
)

= −
∫
dV hC(r)

{(
GΓν

ζ (y)
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+ δν,ν′
[
δ(y − yS)∆(y′, yS) + δ(y − yD)∆(y′, yD)

])
|Ψν(r)|2

+ 2Γν(y)Ψν(r)GΨν

ζ (r)

}
,

where the integration over a Langevin-source is given analogously to the inte-
gration over the GR term in Eqs. (2.39) and (2.40) as

∆(y′, yS/D) = lim
`→0

∫ yS/D+`/2

yS/D−`/2
dỹ δ(ỹ − y′). (4.22)

Note that ∆(y′, yS/D) vanishes unless y′ = yS/D, in which case it is equal to
unity. Usually we can simply ignore such terms, however, when we discretize,
we will find Langevin-source terms located precisely on the source and drain
contacts and therefore we need to include their impact on the generation and
recombination of current at the contacts. Hence, we need to keep track of the
Langevin-sources using ∆(y′, yS/D).

Second, when replacing the boundary term GΓν

ζ using the continuity equation
– analogous to the step from Eq. (3.43) to Eq. (3.44) in the small signal case – we
will obtain an additional Langevin-source term. Therefore the Green’s function
of the terminal current is given by

GICζ = q

∫

D
dV hC(r)

∑

ν

[(
∂

∂y
Gj

ν

ζ (y)−GSνζ (y)

− δν,ν′
[
δ(y − y′)− δ(y − yS)∆(y′, yS)− δ(y − yD)∆(y′, yD)

])
|Ψν(r)|2

− 2iωnν(y)Ψν(r)GΨν

ζ (r)

]
. (4.23)

After integrating the z-direction out and after the usual transformations and the
discretization, we find for the terminal current expression where the Langevin-
source is in the BE:

G
I′C
α = q

∑

k,i,ν

∆xk hC(xk, yi)

[(
Gj

ν

α (yi+)−Gjνα (yi−)−GSνα (yi) ∆yi

− 1

Y0
δm′,0δν,ν′

[
δyi,yi′ − δyi,ySδyi′ ,yS − δyi,yDδyi′ ,yD

]
)
|Ψν(xk, yi)|2

− 2iωnν(yi)Ψ
ν(xk, yi)G

Ψν

α (xk, yi)∆yi

]
(4.24)
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with α ∈ {(ν ′, yi′ , Hj′ ,m
′)} being the aggregate index of the BE. Here, the

Kronecker-delta δyi,yi′ is unity when i = i′ while the Kronecker-deltas δyi,yS/D

are unity when the index i describes a yi on the source and drain contact,
respectively, and likewise for δyi′ ,yS/D

.

If, on the other hand, the Langevin-source is in the PE, we need to include
it when we use the PE of the Green’s functions analogously to Eq. (3.40). After
the discretization we arrive at

G
I′C
a = q

∑

k,i

hC(xk, yi)

×
[∑

ν

(
Gj

ν

a (yi+)−Gjνa (yi−)−GSνa (yi)∆yi
)
|Ψν(xk, yi)|2∆xk

− iωδxk,xk′ δyi,y′i − 2iω
∑

ν

nν(yi)Ψ
ν(xk, yi)G

Ψν

a (xk, yi)∆xk∆yi

]

(4.25)

with a ∈ {xk′ , yi′}.
In order to use the above Green’s functions of terminal currents later on, we

will cast them in matrix form. To this end, note that Eqs. (4.24) and (4.25) have
only terms which are either constant or linear in either of Gf or GV . Therefore,
we may write the discretized Green’s function of the terminal current as

(
GI′C

)t
:=

((
G
I′C
α

)
(
G
I′C
a

)
)t

= P t
I′C
G+ Ξt, (4.26)

where PI′C
∈ CN is the same current projector as in Eq. (3.66)1 and the constant

terms comprise the contributions of Langevin-sources which are given by

Ξ =

(
Ξα
Ξa

)
,

with

Ξα=(ν′,yi′ ,Hj′ ,m′) = − q

Y0

∑

k

∆xk hC(xk, yi′)

× |Ψν′(xk, yi′)|2 δm′,0
[
1− δyi′ ,yS − δyi′ ,yD

]
(4.27)

1Note that the projector for the Green’s function of the terminal current is different from
the small signal case if we consider degeneracy. In that case, we will find that the projector for
the small signal terminal current of Eq. (3.66) contains multiplicities for the spin and valley.
In contrast, the Green’s functions are responses to a fluctuation in a single true state and
therefore they do not contain multiplicities. This will be discussed in more detail in Sect. 4.7.
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if the Langevin-source is in the BE and

Ξa=(xk′ ,yi′ ) = −iω q hC(xk′ , yi′)

if the Langevin-source is in the PE. Note that the Langevin-sources in Eq. (4.27)
do not contribute on the source and drain contacts which follows from keep-
ing track of the Langevin-source as a GR term on the contact as described by
Eq. (4.22).

4.5 Adjoint Method

As was already mentioned in this chapter, solving Eq. (4.16) for the Green’s
functions of the distribution functions and the potential is computationally in-
feasible since we would have to solve a linear equation that has N right hand
sides, compared to just four in the small signal case of Eq. (3.62).

But if all we are interested in are the Green’s functions of the terminal current
fluctuations, we need not know the Green’s functions of the distribution function
and the potential fluctuations. For this reason, we aim to transform Eq. (4.16)
in such a way that we can compute the Green’s functions of terminal currents
of Eq. (4.26) directly, similar to how the adjoint method for the admittance
parameters of Sect. 3.6.2 works.

In analogy to Sect. 3.6.2, we want to remove the odd distribution functions
from the LBE. Using the linear transformation matrix S ∈ CN×N of Eq. (2.109)
to remove the odd distribution functions in the even equations of the BE and
the compression matrix Ce ∈ Rn×N of Eq. (2.110), we can reduce the system of
Eq. (4.16) to

Ce S A
ACCte︸ ︷︷ ︸

=AAC
e/e

CeG︸ ︷︷ ︸
=:Ge

= Ce S B︸ ︷︷ ︸
=:Be

, (4.28)

where AAC
e/e ∈ Cn×n is identical to the matrix defined in in the small signal case

of Eq. (3.64) and Ge ∈ Cn×N as well as Be ∈ Rn×N have no rows of odd Fourier
harmonics in the BE but contain them in their columns. The odd rows of G can
be recovered from the even rows Ge analogously to Eq. (3.69) as

GBE
o := diag

(
AAC,BE
o/o

)−1 [
BBE
o − offdiag

(
AAC,BE
o/e

)
Ge

]
, (4.29)

where GBE
o ∈ CNBE/2×N contains only the odd rows of the BE.

Using that the Green’s function of the terminal current can be expressed as
in Eq. (4.26), we find

(
GI′C

)t
= P t

I′C

(
CteGe +

(
CBE
o

)t
GBE
o

)
+ Ξt
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= P t
I′C

(
CteGe

+
(
CBE
o

)t
diag

(
AAC,BE
o/o

)−1 [
BBE
o − offdiag

(
AAC,BE
o/e

)
Ge

])

+ Ξt,

where we also used the odd compression matrix of Eq. (3.68).

Replacing formally Ge =
(
AAC
e/e

)−1
Be and transposing the equation yields

GI′C = Bt
e

((
AAC
e/e

)t)−1 [
Ce − offdiag

(
AAC,BE
o/e

)t
diag

(
AAC,BE
o/o

)−1
CBE
o

]
PI′C

+
(
BBE
o

)t
diag

(
AAC,BE
o/o

)−1
CBE
o PI′C

+ Ξ

=: Bt
e ye +

(
BBE
o

)t
diag

(
AAC,BE
o/o

)−1
CBE
o PI′C

+ Ξ.

(4.30)

Thus, we can determine ye using the equation

(
AAC
e/e

)t
ye =

[
Ce − offdiag

(
AAC,BE
o/e

)t
diag

(
AAC,BE
o/o

)−1
CBE
o

]
PI′C

(4.31)

and subsequently insert it into Eq. (4.30) in order to compute GI′C . Using this
approach is computationally much more inexpensive than the determination of
the full Green’s function matrix in Eq. (4.16). The time to solve Eq. (4.31)
is comparable to one Newton-Raphson iteration in the determination of the
stationary solution.

Note that as long as we disregard any degeneracies, Eq. (4.31) is identical
to Eq. (3.71) and therefore we can reuse ye in order to compute the admittance
parameters as well. Thus, with a single solution of (4.31), we can determine both
the Green’s functions of terminal currents with Eq. (4.30) and the admittance
parameters with Eq. (3.70). However, additional complications occur when we
want to avoid the explicit computation of all degenerate states. The discussion
of this is postponed to Sect. 4.8 after multiplicities in the Green’s function
equations have been discussed.

4.6 Power Spectral Density

We already discussed the meaning of the PSD in Sect. 4.1. In this section, we are
going to show how we can compute the PSD of terminal currents, i.e. the noise
power contained in drain and gate currents as well as their cross-correlation.
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There are two contributions to noise in devices: scattering as well as gen-
eration and recombination of carriers. Both are treated as stochastic events in
the LBE. Thus, whenever a carrier scatters, its time of arrival at the termi-
nal is modulated which manifests in a fluctuation of the terminal current. A
generation or recombination adds or subtracts a charged carrier to or from the
terminal current and thus leads to fluctuations as well. Moreover, whenever a
scattering event or a GR event occurs, the electric field changes and thus the
displacement current in the terminals changes instantaneously (cf. the definition
of the terminal current of Eq. (4.20)).

Note that throughout this section, we only used the Green’s functions de-
scribing a Langevin-source in the LBE. In this work, we will not concern our-
selves with Langevin-sources in the PE.

4.6.1 Scattering

Let us start with the noise due to scattering events. We know that the total
rate of scattering of carriers in our LBE is given by the integral over either the
in-scattering or out-scattering part of the scattering term of Eq. (2.15). Which
one we use ultimately does not matter since we will integrate over initial and
final states anyway. Thus the one-sided PSD of the fluctuations can be expressed
with the white noise of the scattering rate [51, 60]

P ν,ν
′

ξξ (y,k; y′,k′) = 2 Ω δ(y − y′)
∑

η

(
(1− fν(y,k))Sν,ν

′
η (y;k,k′)fν

′
(y,k′)

)
,

(4.32)

where the factor of two stems from the fact that scattering noise is a Poisson
process, and Ω is the system area. In other words, Pξξ is the PSD of Langevin-
sources and it tells us the amount of fluctuations related to carriers scattering
from the state (ν ′,k′) to the state (ν,k) at the position y.

Our goal is to use the Wiener-Lee theorem [111] to work our way towards the
PSD of terminal currents. It states that once we know the transfer function – or
Green’s function in the frequency domain – from one variable to another, we can
compute the PSD of other quantities. The transfer function of the distribution
function Hf lets us compute the fluctuations of the distribution function by
integrating over all Langevin-sources as

δfν(y,k, t) =
∑

ν′

∫
dy′
∫

d2k′

(2π)2

∫
dt′
(
Hf
)ν,ν′

(y,k, t; y′,k′, t′) ξν
′

BE(y′,k′, t′).

(4.33)

Since we are only interested in noise in stationary systems, the transfer function
Hf can be expressed such that it only depends on the time difference t− t′ as

(
Hf
)ν,ν′

(y,k, t; y′,k′, t′) =
(
Hf
)ν,ν′

(y,k, 0; y′,k′, t′ − t)
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and therefore we can Fourier transform it to the Green’s function of the distri-
bution as

(
Gf
)ν,ν′

(y,k; y′,k′;ω) =

∫
d(t′ − t)

(
Hf
)ν,ν′

(y,k, 0; y′,k′, t′ − t)eiω(t′−t),

where we wrote down the frequency argument of the Green’s function explicitly.
Bear in mind that although we did not write it down everywhere, all of the
Green’s functions in this chapter are frequency-dependent. The fluctuations of
the distribution function in the frequency domain could in principle be computed
with the above Green’s function similar to how the transfer function is used
in the time domain. However, ξν

′
BE(y′,k′, t′) is usually not square-integrable

and therefore its Fourier transform does not exist. But the Wiener-Khinchin
theorem states that despite its non-existence, the PSD is still well defined. And
it that sense we can use Green’s functions to compute PSDs related to whichever
quantity we want in frequency space.

This idea will be used to compute the PSD of terminal currents starting from
the PSD of Langevin-sources formulated in Eq. (4.32) which is the essence of the
Wiener-Lee theorem. But first we need to understand what the Green’s function
of a whole scattering process is. Recall that the Green’s function Gf was defined
with Eq. (4.10), where the Langevin-source was replaced by a delta-distribution,
suggesting the generation of a single electron in some state. Therefore Gf is the
response of the distribution function if there were an electron created ex nihilo.
With this interpretation, it makes sense that we can use Gf multiplied by the size
of a fluctuation in order to calculate the fluctuation of the distribution function.

But this is not what is happening in a scattering process. Each scattering
event is a perfectly correlated annihilation and subsequent creation of an elec-
tron. Say we have an electron in the initial state (ν ′0, y

′
0,k
′
0) which is involved

in some kind of scattering event that changes it to the final state (ν0, y0,k0).
Then we can define the response of the distribution function at (ν, y,k) to such
an annihilation and creation event as

(
Gf
)ν,ν0(y,k; y0,k0;ω)−

(
Gf
)ν,ν′0(y,k; y′0,k

′
0;ω), (4.34)

where the Green’s function with the negative sign is the response to the annihi-
lation.

Equipped with this combination of Green’s functions for a scattering event,
we can use the Wiener-Lee theorem to compute the PSD of distribution functions
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due to the scattering events:

Qν,ν
′

ff (y,k; y′,k′;ω) =
∑

ν0,ν′0

∫∫
dy0 dy

′
0

∫∫
d2k0

(2π)2

d2k′0
(2π)2

×
((
Gf
)ν,ν0(y,k; y0,k0;ω)−

(
Gf
)ν,ν′0(y,k; y′0,k

′
0;ω)

)

×
((
Gf
)ν,ν0(y′,k′; y0,k0;ω)−

(
Gf
)ν,ν′0(y′,k′; y′0,k

′
0;ω)

)∗

× P ν0,ν′0
ξξ (y0,k0; y′0,k

′
0).

(4.35)

Ultimately, we do not want to compute the PSD shown in Eq. (4.35) but
rather the PSD of terminal currents. The Green’s function of the terminal
current GI

′
C of Eq. (4.23) expresses the response of the terminal current in the

frequency domain as

δI ′C(ω) =
∑

ν′

∫
dy′
∫

d2k′

(2π)2

(
GI
′
C
)ν′

(y′,k′;ω) ξν
′

BE(y′,k′, ω).

And using the Wiener-Lee theorem, we find the expression for the PSD of ter-
minal currents

QI′C ,I
′
C′

(ω) =
∑

ν0,ν′0

∫∫
dy0 dy

′
0

∫∫
d2k0

(2π)2

d2k′0
(2π)2

×
((
GI
′
C
)ν0(y0,k0;ω)−

(
GI
′
C
)ν′0(y′0,k

′
0;ω)

)

×
((
GI
′
C′
)ν0(y0,k0;ω)−

(
GI
′
C′
)ν′0(y′0,k

′
0;ω)

)∗

× P ν0,ν′0
ξξ (y0,k0; y′0,k

′
0).

(4.36)

4.6.2 Generation and Recombination

The stochastic generation and recombination of carriers represents a source for
fluctuations, similar to the scattering processes. In our case we only have gen-
eration and recombination of carriers at the source and drain contacts (see
Sect. 2.4.3) where they are injected into or extracted from the semiconductor re-
gion. Recall that we introduced the generation and recombination in Eq. (2.36)
as a scattering process in between the subbands of the semiconductor and a fic-
tional thermal bath representing a contact. This way, the GR rate of Eq. (2.36)
is structurally identical to a scattering rate and therefore, we may compute the
PSD in the same way as for a scattering process, i.e. just as if the thermal baths
of the contacts were trap levels [61].



4.6. POWER SPECTRAL DENSITY 129

In analogy to the scattering processes, we may define the white noise of the
GR rate as

Rν,ν
′

∗ (y,k; y′,k′) = 2Ω δν,ν′δ(y − y′)
∑

C=S,D

(1− fν(y,k)) γν,C(y,k;k′)fCeq(k′),

Rν,ν
′

� (y,k; y′,k′) = 2Ω δν,ν′δ(y − y′)
∑

C=S,D

(
1− fCeq(k′)

)
γC,ν(y,k′;k)fν(y,k),

(4.37)

where γν,C is given by Eq. (2.37). Here, R∗ is the rate of creation and R� is the
rate of annihilation. Using these kernels, we can express the PSD of terminal
currents using the Wiener-Lee theorem but this time acknowledging that fluctu-
ations in the fictional thermal baths of the contacts do not contribute. Therefore
we only include Green’s functions for the creation and annihilation in the semi-
conductor region while the Green’s functions for creation and annhilation events
in the contact thermal bath vanish. With Eq. (4.37) we find two contributions:

RI′C ,I
′
C′

=
∑

ν0,ν′0

∫∫
dy0 dy

′
0

∫∫
d2k0

(2π)2

d2k′0
(2π)2

×
[(
GI
′
C
)ν0(y0,k0)

((
GI
′
C′
)ν0(y0,k0)

)∗
R
ν0,ν′0∗ (y0,k0; y′0,k

′
0)

+
(
−
(
GI
′
C
)ν′0(y′0,k

′
0)
)(
−
(
GI
′
C′
)ν′0(y′0,k

′
0)
)∗
R
ν0,ν′0
� (y0,k0; y′0,k

′
0)

]

= 2
∑

C0=S,D

∑

ν0

∫
d2k0

(2π)2

(
GI
′
C
)ν0(yC0 ,k0)

((
GI
′
C′
)ν0(yC0 ,k0)

)∗

× vGR

[
fν0

eq (yC0 ,k0) + fν0(yC0 ,k0)− 2fν0(yC0 ,k0)fν0
eq (yC0 ,k0)

]
,

(4.38)

where we omitted the frequency argument for brevity. Note that – somewhat
surprisingly – the actual GR rate of Eq. (2.38) is linear in either the distribu-
tion function or the equilibrium distribution function but the PSD has terms
proportional to their product. This is because in the GR rate, the terms pro-
portional to their product in the in- and out-scattering terms cancel each other
since they have opposite signs. That means that the GR rate does in fact include
the Pauli principle despite being linear. On the other hand, both the in- and
out-scattering contribute positively to the total noise and therefore there is no
cancellation and products of the distribution functions appear in the PSD.
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4.6.3 Discretization

Let us discretize the total PSD consisting of the scattering noise Q of Eq. (4.36)
and the GR noise R on the contacts of Eq. (4.38). Since we compute the Green’s
functions of the terminal currents using Eq. (4.23) in the Herring-Vogt trans-
formed k-space with a subsequent projection onto equienergy circles and Fourier
harmonics as well as a transformation to the total energy H (cf. Sect. 2.4.4), we
need to transform the PSD in the same way.

In Sect. 2.4.4, we mentioned that we will simply assume that the expressions
for the scattering rates are already in the Herring-Vogt transformed space from
which it follows that the same must hold true for the scattering rate in the PSD.
The rest of the expression for the PSD remains invariant and therefore we can
simply assume that k-space is already Herring-Vogt transformed.

Inserting Eq. (4.32) into Eq. (4.36) and expanding the Green’s functions and
distribution functions in Fourier harmonics and transforming to H-space, we
find for the PSD of the scattering processes

QI′C ,I
′
C′

(ω) = 2 Ω
∑

ν,ν′
ZvZv

′
∫
dy

∫
dH

∫
dφ

∫
dH ′

∫
dφ′

×
(∑

m

(
GI
′
C
)ν
m

(y,H;ω)Ym(φ)−
∑

m′

(
GI
′
C
)ν′

(y,H ′;ω)Ym′(φ
′)

)

×
(∑

n

(
GI
′
C′
)ν
n
(y,H;ω)Yn(φ)−

∑

n′

(
GI
′
C′
)ν′
n′(y,H

′;ω)Yn′(φ
′)

)∗

×
((

1−
∑

`

fν` (y,H)Y`(φ)

)∑

η

Sν,ν
′

η (y;H,H ′)
∑

`′
fν
′

`′ (y,H
′)Y`′(φ

′)

)
.

(4.39)

Working out the product of Fourier harmonics is tedious but straightforward.
Here we can also use that the scattering processes fixes the difference between
the initial and final energy with a delta-distribution as shown in Eq. (2.21) and
therefore we can straightforwardly integrate over H ′. Due to its lengthiness the
resulting expression is shown in the appendix in Eq. (C.1). Nevertheless, we
want to mention a detail that is important for consistency. When discretizing
Eq. (4.39), we need to integrate over products of quantities which may be defined
on the direct or on the adjoint grid. The box-integration method suggest that we
cannot average quantities individually but we must average the whole product.
In Sect. 2.4.5, we already discussed what that means for the scattering term and
here it is the same approach: consider a product of some functions dn on the
direct grid and some functions am on the adjoint grid. Then the integral over y
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needs to be computed as

∫
dy

(∏

n

dn(y)

)(∏

m

am(y)

)
= ∆y1

(∏

n

dn(y1)

)(∏

m

am(y1+

)

+

Ny−1∑

i=2

∆yi

(∏

n

dn(yi)

) ∏
m am(yi+) +

∏
m am(yi−)

2

+ ∆yNy

(∏

n

dn(yNy)

)(∏

m

am(yNy−)

)
,

where the first and last boxes, ∆y1 and ∆yNy , are only half-sized (see Eq. (2.74)).
If we would not use the above averaging procedure, we could not be consis-
tent with the way the scattering rate is discretized in Sect. 2.4.5 and therefore
the PSD would be inconsistent with the small signal admittance parameters
(cf. Sect. 5.4.2).

The PSD R of the GR rate at the contacts can be transformed and its
constituents expanded in the same way. Since the GR rate is only defined on
the contacts, only even harmonics can contribute and therefore, after the H-
transformation and the expansion in Fourier harmonics, Eq. (4.38) yields

RI′C ,I
′
C′

= 2
∑

C0=S,D

∑

ν

Zν
∫
dH

∫
dφ

×
( ∑

m even

(
GI
′
C
)ν
m

(yC0 , H)Ym(φ)

)( ∑

n even

(
GI
′
C′
)ν
n
(yC0 , H)Yn(φ)

)∗

× vGR

[
fνeq(yC0 , H) +

(
1− 2fνeq(yC0 , H)

) ∑

` even

fν` (yC0 , H)Y`(φ)

]
,

(4.40)

The result of the discretization is shown in the appendix in Eq. (C.2).
The total PSD is then obviously given by

PI′C ,I
′
C′

(ω) = QI′C ,I
′
C′

(ω) +RI′C ,I
′
C′

(ω). (4.41)

Since we are only going to compute the PSD of terminal currents, we are often
going to refer to it as

PC,C′(ω) := PI′C ,I
′
C′

(ω) (4.42)

in the remainder of this work. Moreover, in order to inspect the noise in a
device in more detail, we want to understand where in the device it originates.
Therefore we define the density KC,C′ of the PSD as

PC,C′(ω) =:

∫
dy KC,C′(y;ω), (4.43)
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where KC,C′(y;ω) is given by Eq. 4.41 but without the integration over y. That
means that KC,C′ is the contribution to the PSD per position in transport direc-
tion or – in the discretized case – per grid point in transport direction. Similarly,
we can also define the contribution to the PSD per position in y-direction and
per total energy H as

PC,C′(ω) =:

∫
dy

∫
dH KC,C′(y,H;ω), (4.44)

where KC,C′(y,H;ω) is the result of Eq. 4.41 omitting both the y- and the
H-integration. Note that there is an ambiguity in defining KC,C′ since the
scattering process is non-local in H-space. In principle there are two densities,
one w.r.t. the initial energy H ′ and one w.r.t. the final energy H of Eq. (4.39).
In this work, we choose to compute the density as a function of the initial energy
H ′. Lastly, we may also define a PSD density per subband as

KC,C′(y,H;ω) =:
∑

ν

KνC,C′(y,H;ω). (4.45)

Bear in mind that in practice we will compute the PSD of systems which
have some level degeneracy. In that case, we will find multiplicities in the PSD.
The discussion of this is postponed to Sect. 4.7.3

4.6.4 Common-Source Configuration

When we compute the PSDs of the terminal currents later on in Chap. 5, we will
apply biases in the common-source configuration of the device. As was already
mentioned in Sect. 3.6.3, the common-source configuration is given when the
gates are shorted and the voltages are measured relative to the source contact.
In terms of the PSD this means that we need to understand how a fluctuation
inside the device elicits a fluctuation in the terminal currents when contacts
are shorted. This question can be answered entirely by noting that the Green’s
function of the terminal current of Eq. (4.20) is additive in the sense that

GIGζ = GITG
ζ +GIBG

ζ ,

since the integral over a shorted gate (G) is merely the sum of an integral over the
top gate (TG) and the bottom gate (BG) of the device in Fig. 2.1. This entails
that the PSD of Eq. (4.41) for a shorted gate can be expanded into a sum of
all possible top and bottom gate contributions, including the cross-correlations
between the gates as

PGG = PTG,TG + PTG,BG + PBG,TG + PBG,BG.

Likewise, the cross-correlation between the shorted gates and the drain can be
expanded as

PGD = PTG,D + PBG,D.
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4.7 Degeneracy

Treating degeneracy in the framework of the Green’s functions of fluctuations
is somewhat different from the case where we solve the BE. We will use the
same terminology as in Sect. 2.4.6, where a single individual state is referred
to as a true state. If a set of true states are indistinguishable, they belong to
a degenerate group. A single true state, which is part of a degenerate group, is
called a degenerate state.

The states of a degenerate group share all properties like the band structure
and the scattering rates. For example, in our current framework, it is impossible
to distinguish between a spin up and a spin down electron. Furthermore, the
valley multiplicity introduced in Eq. 2.93 also means that we cannot distinguish
between electrons occupying one or the other valley on the same axis in k-space.

In order to treat the degeneracy in the Green’s function equations of Sect. 4.16,
it would be tempting to proceed analogously to the stationary case shown in
Sect. 2.4.6 which is equally valid for the small signal BE. However, there is a
difference that we must account for: the Langevin-source terms on the r.h.s. of
Eq. (4.6) represent fluctuations of each individual true state. Therefore, the
Green’s functions represent the response to a fluctuation in a single true state.
This is also the reason why there are no multiplicities in the Green’s function of
the terminal current of Eq. (4.23), even when degeneracies are considered.

In order to understand where multiplicities appear, we will reduce the system
of Green’s functions of Eq. (4.16) to avoid computing degenerate states several
times. Then we can use the adjoint method of Sect. 4.5 unaltered in order to
compute the Green’s functions of the terminal currents.

4.7.1 One Degenerate Group

Before we consider the case of multiple degenerate groups, let us first take a
look at the LBE as if it only contained a single degenerate group of µ-times
degenerate states. Once we understand this case, we can reuse results later on.
The system of equations consisting of the LBE with a single degenerate group
and the PE can be written down as




LV

LSf
...

LV
Af · · · Af AV







G11 · · · · · · G1µ G1V
...

. . .
...

...
...

. . .
...

...
Gµ1 · · · · · · Gµµ GµV
GV 1 · · · · · · GV µ GV V




︸ ︷︷ ︸
=G

=



I 0

. . .

0 I




︸ ︷︷ ︸
=B

(4.46)
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with

LSf =




Lf S · · · S

S
. . .

...
...

. . . S
S · · · S Lf



. (4.47)

Since we have µ degenerate states, we can split the LBE into µ identical subma-
trices Lf . The scattering submatrices S connecting the degenerate states must
be identical or else we would allow for an imbalance in the occupation of the
states which would render them non-degenerate. Since the µ degenerate states
are indistinguishable they must also contribute in the same way to the charge in
the potential via Af and conversely the potential must contribute in the same
way to the LBE via LV . We also split the Green’s function matrix G into the
same subspaces as the LBE and PE matrix. Note that due to notational diffi-
culties, the boundary conditions of Sect. 4.3 are not explicitly shown but they
are assumed to be present nonetheless.

Our goal is to reduce Eq. (4.46) to a system of equations where the degenerate
group is represented by only one true state of the degenerate group, hence,
reducing the computational load significantly. To this end, consider the terminal
current expressed as in Eq. (4.26) with the terminal current operator PI′C

. The
terminal current operator can be split into operators that act upon the true
states of the degenerate groups as

(
GI′C

)t
= P t

I′C
G + Ξt =

(
(P1)t · · · (Pµ)t (PV )t

)
G + Ξt

=
(
(P1)t · · · (P1)t (PV )t

)
G + Ξt,

where P1 through Pµ are identical since the states are indistinguishable. Now
let us introduce a transformation of the Green’s function matrix,

G = T G̃ =




0

T ′
...
0

0 · · · 0 I







G̃11 · · · · · · G̃1µ G̃1V
...

. . .
...

...
...

. . .
...

...

G̃µ1 · · · · · · G̃µµ G̃µV
G̃V 1 · · · · · · G̃V µ G̃V V



, (4.48)

where the unit matrix is in the subspace of the PE. The transformation T has
full rank and fulfills

P t
I′C
T =

(
(P1)t 0 · · · 0 (PV )t

)
,
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i.e. only the projection operator of the first set of true states of the degenerate
group does not vanish. Thus, we may choose the transformation as

(T ′)k` =

{
1
µI, for ` = 1 ∨ ` = k,

− 1
µ(µ−1)I, else,

(4.49)

where k, ` = 1, . . . , µ. With T , we can compute the Green’s function of the
terminal current as

(
GI′C

)t
= P t

I′C
T G̃ + Ξt

=
(
(P1)t (PV )t

)( G̃11 · · · · · · G̃1µ G̃1V

G̃V 1 · · · · · · G̃V µ G̃V V

)
+ Ξt.

(4.50)

Note that in Sect. 4.5 we showed how we can compute the Green’s functions of
terminal currents directly from the general Green’s function equations. Here,
we showed that by using G̃ instead of G, it is sufficient to know only the first
row and the last row of the matrix G̃ in order to determine the Green’s function
of the terminal current.

Inserting Eq. (4.48) into Eq. (4.46), we obtain




LV

LSf T
′ ...

LV
Af 0 · · · 0 AV


 G̃ = B (4.51)

with

(
LSf T

′)
k`

= Lf
(
T ′
)
k`

+

µ∑

n=1
n6=k

S
(
T ′
)
n`

=





1
µ(Lf − S) + S, for ` = 1,
1
µ(Lf − S), for ` 6= 1 ∧ ` = k,

− 1
µ(µ−1)(Lf − S), else.

Now, we can use equivalence transformations on Eq. (4.51) to remove the de-
pendencies on all but the first set of true states. To this end, let us add the
rows 2, . . . , µ to the first row of each column. The computation boils down to a
simple sum:

` = 1 :

µ∑

k=1

(
LSf T

′)
k`

= Lf + (µ− 1)S,
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` 6= 1 :

µ∑

k=1

(
LSf T

′)
k`

=
1

µ
(Lf − S)− (µ− 1)

1

µ(µ− 1)
(Lf − S) = 0.

Therefore, the first row only depends on G̃1` and G̃V ` with ` = 1, . . . , µ, V .
Furthermore, we do not need to compute them since – according to Eq. (4.50)
– we can compute the Green’s function of terminal currents with only G̃1` and
G̃V `. Dropping all equations but the ones necessary for the terminal current, we
find that Eq. (4.51) yields

(
Lf + (µ− 1)S µLV

Af AV

)(
G̃11 · · · G̃1µ G̃1V

G̃V 1 · · · G̃V µ G̃V V

)
=

(
I · · · I 0
0 · · · 0 I

)
. (4.52)

Note that the factor µ in front of LV as well as the unit matrices in the first row
of the r.h.s. stem from the addition of the rows. Since the columns ` = 1, . . . , µ of
Green’s function matrix in Eq. (4.52) obey the same equations, we can trivially
conclude that

G̃1` = G̃11, G̃V ` = G̃V 1, with ` = 1, . . . , µ, (4.53)

and therefore reduce Eq. (4.52) even further to

(
Lf + (µ− 1)S µLV

Af AV

)(
G̃11 G̃1V

G̃V 1 G̃V V

)
=

(
I 0
0 I

)
. (4.54)

Using Eq. (4.53), we can also see how the Green’s functions of the terminal
currents of Eq. (4.50) are identical for each of the G̃1` and G̃V ` because they
are degenerate. Therefore, it is sufficient to know the Green’s function terminal
current w.r.t. only one true state of the degenerate group given by

((
G
I′C
1

)t (
G
I′C
V

)t)t
=
(
(P1)t (PV )t

)( G̃11 G̃1V

G̃V 1 G̃V V

)
+
(
Ξt

1 Ξt
V

)t
. (4.55)

The Green’s function of the terminal current obviously does not contain any
multiplicities since it is the response to a fluctuation in a single true state.

In summary, it is sufficient to solve Eq. (4.54) instead of the whole system of
Eq. (4.46). Moreover, in the presence of a single degenerate group, the terminal
current response is identical for fluctuations in degenerate states. Hence it is
sufficient to determine the Green’s function of the terminal current of only one
true state as shown in Eq. (4.55).

4.7.2 Multiple Degenerate Groups

Let us now turn to the case where we have m degenerate groups, where the
i-th group consists of µi true states. The total number of true states will be
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referred to as µ =
∑

i µi. Again, true states may be indistinguishable spin up
and spin down states or indistinguishable states due to symmetries in the valley
structure. Considering this composition of degeneracy, we can write down the
LBE and PE system of Eq. (4.16) as




LS,1f S12 · · · · · · S1m L1
V

S21 LS,2f · · · · · · S2m L2
V

...
. . .

...
...

...
. . . Sm−1,m

...

Sm1 · · · · · · Sm,m−1 LS,mf LmV
A1
f A2

f · · · · · · Amf AV




︸ ︷︷ ︸
=LS

×




G11 · · · · · · G1m G1V

...
. . .

...
...

...
. . .

...
...

Gm1 · · · · · · Gmm GmV

GV 1 · · · · · · GV m GV V




︸ ︷︷ ︸
=G

=



I 0

. . .

0 I


 ,

︸ ︷︷ ︸
=B

(4.56)

where the submatrices LS,if describe a degenerate group of states and can be
represented as

LS,if =




Lif Si · · · Si

Si
. . .

...
...

. . . Si

Si · · · Si Lif



. (4.57)

The submatrices LiV are the derivatives of the BE w.r.t. the potential, the sub-
matrices Aif are the derivatives of the PE w.r.t. the distribution functions of the
respective distinguishable states, and AV is the derivative of the PE w.r.t. the
potential.

The Green’s function matrix in Eq. (4.56) has been split into submatrices of
the distinguishable states Gij , where the submatrices related to indices of the PE
use the superscript V . The r.h.s. of Eq. (4.56) contains the delta-distributions
of the Green’s functions approach which are effectively a unit matrix after dis-
cretization. Again, we didn’t explicitly write down the boundary conditions of
Sect. 4.3 due to the notational difficulties but they are assumed to be contained
in the equation.
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The submatrix LS,if of Eq. (4.57) represents the BE operator of a set of

degenerate states. Therefore, each LS,if is equivalent to the set of degenerate
states of Eq. (4.47).

The scattering submatrices Sij in between degenerate groups are in general
Rµi×µj matrices since the initial and final degenerate groups may have different
levels of degeneracy. However, since each initial true state of the initial degener-
ate group is indistinguishable from any other true state in that degenerate group
– and the same is valid for the final states – the submatrices of Sij referring to
the scattering between individual true states of the degenerate groups must be
identical. Therefore, we can write down Sij down as

(Sij)k` = sij , with i, j = 1, . . . ,m, k = 1, . . . , µi, ` = 1, . . . , µj .

Once again our goal is to reduce Eq. (4.56) to a system of equations where
each degenerate group is represented by only one true state of the degenerate
group, hence, reducing the computational load significantly. To this end, we
will proceed analogously to Sect. 4.7.1, only this time, we need to transform m
degenerate groups instead of one. Analogous to Eq. (4.48), the transformation
on the Green’s function reads

G := T G̃ :=




T 1 0 0
. . .

...
0 Tm 0
0 · · · 0 I


 G̃, (4.58)

where the diagonal blocks T i ∈ Rµi×µi in the subspaces of the m degenerate
groups are given analogously to Eq. (4.49) as

T i =

{
1
µi
I, for ` = 1 ∨ ` = k,

− 1
µi(µi−1)I, else.

Dividing the terminal current projection operator into m subspaces, we obtain
results analogous to Eq. (4.50) in every subspace of a degenerate group:

(
GI′C

)t
= P tG + Ξt

=
(
(P1)tT 1 · · · (Pm)tTm (PV )t

)




G̃11 · · · · · · G̃1m G̃1V

...
. . .

...
...

...
. . .

...
...

G̃m1 · · · · · · G̃mm G̃mV

G̃V 1 · · · · · · G̃V m G̃V V




+ Ξt. (4.59)
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The projection operators of each subspace reduce to

(P i)tT i =
(
(P i

1)t 0 · · · 0
)

︸ ︷︷ ︸
µi elements

, (4.60)

where (P i
1)t is the projection operator on the first true state of the i-th degen-

erate group.
Using Eq. (4.58) in Eq. (4.56), we find

LS T G̃ = B (4.61)

with

LS T =




LS,1f T 1 S12T 2 · · · · · · S1mTm L1
V

S21T 1 LS,2f T 2 · · · · · · S2mTm L2
V

...
. . .

...
...

...
. . . Sm−1,mTm

...

Sm1T 1 · · · · · · Sm,m−1Tm−1 LS,mf Tm LmV
A1
fT

1 A2
fT

2 · · · · · · Amf T
m AV




.

Here, the diagonal terms are given by
(
LS,if T i

)
k`

=
(
Lif
)
kk

(
T i
)
k`

+
∑

n6=k

(
Lif
)
kn

(
T i
)
n`

= Lif
(
T i
)
k`

+
∑

n6=k
Si
(
T i
)
n`

=





1
µi

(
Lif − Si

)
+ Si, for ` = 1,

1
µi

(
Lif − Si

)
, for ` 6= 1 ∧ i = j,

− 1
µi(µi−1)

(
Lif − Si

)
, else,

while the off-diagonal terms read

(SijT j)k` =

µj∑

n=1

(Sij)kn(T j)n` =

µj∑

n=1

sij(T j)n` =

{
sij , for ` = 1,

0, else.

Lastly, the operator Ajf of the PE acts upon the µj states of the degenerate
group j. Therefore, it can be divided into µj identical subspaces, each with an

operator ajf acting on a single true state. Thus, multiplying with the operator

T j yields

AjfT
j =

(
ajf ajf · · · ajf

)

︸ ︷︷ ︸
µj times

T j =
(
ajf 0 · · · 0

)
.
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As in the case of a single degenerate group, we can use equivalence trans-
formations on Eq. (4.61). This time, we need to treat every subspace of a
degenerate group analogously to the case of the previous section. That means,
we take the subspace of the first true state of each degenerate group and add
the equations for the other true states to the first one. Furthermore, we drop all
duplicate equations from each subspace. Then Eq. (4.61) reduces similarly to
Eq. (4.54) to a system of equations where each degenerate group is represented
by one true state:




L1
f + (µ1 − 1)S1 µ1s

12 · · · · · · µ1s
1m µ1L

1
V

µ2s
21 L2

f + (µ2 − 1)S2 · · · · · · µ2s
2m µ2L

2
V

...
. . .

...
...

...
. . . µmS

m−1,m
...

µms
m1 · · · · · · µms

m,m−1 Lmf + (µm − 1)Sm µmL
m
V

a1f a2f · · · · · · amf AV




×




(G̃11)11 · · · · · · (G̃1m)11 G̃1V

...
. . .

...
...

...
. . .

...
...

(G̃m1)11 · · · · · · (G̃mm)11 G̃mV

(G̃V 1)11 · · · · · · (G̃V m)11 G̃V V




=



I 0

. . .

0 I


 , (4.62)

where we used that the columns of the first row of Green’s functions within a
degenerate group obey the same equations and are therefore identical, i.e.

(G̃ij)1` = (G̃ij)11, (G̃V j)1` = (G̃V j)11, with ` = 1, . . . , µj , i, j = 1, . . . ,m.
(4.63)

Finally, using Eq. (4.60) and Eq. (4.63) in Eq. (4.59), we can express the
Green’s function of the terminal current as




G
I′C
1
...

G
I′C
m

G
I′C
V




t

:=
((

P1
1

)t
. . . (Pm

1 )t
(
PV
)t)

×




(G̃11)11 · · · · · · (G̃1m)11 G̃1V

...
. . .

...
...

...
. . .

...
...

(G̃m1)11 · · · · · · (G̃mm)11 G̃mV

(G̃V 1)11 · · · · · · (G̃V m)11 G̃V V




+




Ξ1
...

Ξm

ΞV




t

, (4.64)
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where we only kept one true state per degenerate group. Again, as is evident
the Green’s function of the terminal current does not contain multiplicities.

When we compare the reduced system of Green’s functions of Eq. (4.62) and
the reduced BE in the stationary case of Eq. (2.91), we can see that they are
not the same. This is because the Green’s functions are responses to fluctua-
tions in a single true state while in the stationary case we simply consider the
states indistinguishable and sum up their contributions. Therefore the conjec-
ture expressed at the end of Sect. 4.5 that we could solve the system of Green’s
function equations and the small signal analysis in one step only holds true un-
conditionally if we do not reduce systems due to their degeneracy. In the case
of a reduction, as in this section, it depends on the kind of degeneracy. We will
defer the in depth discussion of this to Sect. 4.8.

4.7.3 Power Spectral Density

Since the whole set of Green’s function equations contains redundancy in the
case of degeneracy, any quantity derived from the Green’s functions can be
reduced to a representation where a single true state out of each degenerate
group represents the whole degenerate group. This is equally true for the PSD.

We will approach the problem in matrix form, i.e. we assume the PSD of
Eq. (4.41) has already been discretized. The PSD of some quantities X and Y
whose Green’s functions are assumed to be known – for example the Green’s
functions of terminal currents –, can be written down using the Wiener-Lee
theorem [111] as

PXY = (GX)tPξξ(GY )∗, (4.65)

where Pξξ is the matrix containing the fluctuations due to scattering and GR
rates. Note that Eq. (4.65) is equivalent to the discretized version of Eq. (4.39) if
the Green’s function GX , expressing the effect of a fluctuation due to a scattering
event on the quantity X, contains both creation and annihilation parts as in
Eq. (4.34). Moreover, Pξξ is the PSD of the Langevin-sources in the LBE,
therefore the Green’s functions GX and GY only contain the responses of X and
Y , respectively, to a fluctuation in the distribution function. In other words, if
we use the terminal current Green’s function of Eq. (4.64), the Green’s function
only contains the subspaces 1 through m.

Since Pξξ can be expressed as the sum of all scattering rates and GR rates
(cf. Eq. (4.41)), it shares any symmetry properties arising from the structure
of these rates, e.g. symmetries due to degeneracy. Therefore we can split it
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analogously to the LBE into subspaces of degenerate groups, i.e.

Pξξ =



P 11
ξξ · · · P 1m

ξξ
...

. . .
...

Pm1
ξξ · · · Pmmξξ


 ,

where each of the diagonal blocks is given a rate of a true state scattering to
itself and rates in between degenerate true states

(P iiξξ)k` =:

{
piidiag, for k = `,

piioffdiag, for k 6= `,
with k, ` = 1, . . . µi.

The off-diagonal blocks of Pξξ connect true states of two degenerate groups.
Therefore, all rates connecting individual true states of these degenerate groups
must be identical:

(P ijξξ)k` =: pij , with i 6= j, k = 1, . . . , µi, ` = 1, . . . , µj .

Using this notation to express the PSD of degenerate groups and noting, once
more, that the Green’s function of the terminal current has identical elements
per degenerate group, we can simplify the PSD of Eq. (4.65) as

PXY =
m∑

i=1

µi∑

k=1

µi∑

`=1

(Gi
X)tk(P

ij
ξξ)k`(G

j
Y )∗`

=

m∑

i=1

[ µi∑

k=1

µi∑

`=1

(Gi
X)tk(P

ii
ξξ)k`(G

i
Y )∗` +

µj∑

j=1
j 6=i

µi∑

k=1

µj∑

`=1

(Gi
X)tk(P

ij
ξξ)k`(G

j
Y )∗`

]

=
m∑

i=1

[
µi(G

i
X)t1

(
piidiag + (µi − 1)piioffdiag

)
(Gi

Y )∗1

+

µj∑

j=1
j 6=i

µiµj(G
i
X)t1 p

ij (Gj
Y )∗1

]
. (4.66)

4.7.4 Application

With the general derivation of multiplicities in the Green’s function equations
and the derivation of the PSD including degenerate groups, we have all the set
pieces to reduce the Green’s function equations for the silicon case.

We do not consider any spin-dependent scattering rates such as spin-flipping
transitions. Therefore spin up and spin down states of carriers are degenerate as
was already mentioned in Sect. 2.4.6. Moreover, we consider the six X-valleys
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of silicon (cf. Fig. 2.6), where each pair of valleys on the same axis in k-space
is indistinguishable. Hence, it is sufficient to consider three valleys, each being
twice degenerate (cf. Fig. 2.15).

In the notation of Sect. 2.4.6, which includes the spin orientations ↑ and ↓,
we can write down the system of equations with the matrix

LS =




LS,1,↑f S12,↑ S13,↑ 0 0 0 L1,↑
V

S21,↑ LS,2,↑f S23,↑ 0 0 0 L2,↑
V

S31,↑ S32,↑ LS,3,↑f 0 0 0 L3,↑
V

0 0 0 LS,1,↓f S12,↓ S13,↓ L1,↓
V

0 0 0 S21,↓ LS,2,↓f S23,↓ L2,↓
V

0 0 0 S31,↓ S32,↓ LS,3,↓f L3,↓
V

A1,↑
f A2,↑

f A3,↑
f A1,↓

f A2,↓
f A3,↓

f AV




,

where we already split up the product space of indices into the three valley
superscripts 1, 2, and 3 as well as the possible spin orientations ↑ and ↓. Since the
LBE and the PE do not discriminate between spin orientations, both diagonal
blocks are identical and we can simply drop the spin index and apply the result
of Sect. 4.7.1, i.e. Eq. (4.54), to find the system of equations




LS,1f S12 S13 2L1
V

S21 LS,2f S23 2L2
V

S31 S32 LS,3f 2L3
V

A1
f A2

f A3
f AV







G̃11 G̃12 G̃13 G̃1V

G̃21 G̃22 G̃23 G̃1V

G̃31 G̃32 G̃33 G̃1V

G̃V 1 G̃V 2 G̃V 3 G̃V V


 =




I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I


 .

Keep in mind that the boundary conditions are included but are not explicitly
written down. Each of the valleys one through three is twice degenerate and
has the g-type scattering of the inter-valley phonon scattering of Sect. 2.4.2 as
transitions within each degenerate group, i.e.

LS,if =

(
Lif Si

Si Lif

)
,

where Si is the g-type transition between the opposing i-th valleys. Using
Eq. (4.62), we find that our system of equations can be expressed as




L1
f − S1 2s12 2s13 4L1

V

2s21 L2
f − S2 2s23 4L2

V

2s31 2s32 L3
f − S3 4L3

V

a1
f a2

f a3
f AV







(G̃11)11 (G̃12)11 (G̃13)11 G̃1V

(G̃21)11 (G̃22)11 (G̃23)11 G̃1V

(G̃31)11 (G̃32)11 (G̃33)11 G̃1V

(G̃V 1)11 (G̃V 2)11 (G̃V 3)11 G̃V V



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=




I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I


 , (4.67)

where the Green’s functions (G̃ij)11 are the Green’s function of, say, spin up
electrons and only one of each of the valleys per axis k-space.

It follows that the Green’s function of terminal currents can be computed
using

(
GIC

)t
=
((

P1,↑
1

)t (
P2,↑

1

)t (
P3,↑

1

)t (
PV
)t)

×




(G̃11)11 (G̃12)11 (G̃13)11 G̃1V

(G̃21)11 (G̃22)11 (G̃23)11 G̃1V

(G̃31)11 (G̃32)11 (G̃33)11 G̃1V

(G̃V 1)11 (G̃V 2)11 (G̃V 3)11 G̃V V


+ Ξt,

knowing that the terminal current response for a fluctuation of spin down elec-
trons, or a fluctuation in the other valley of a degenerate group, will result in
an identical response of the terminal current.

The multiplicities in the PSD due to the spin degeneracy can be computed
with the PSD of fluctuations

Pξξ =

(
P ↑ξξ 0

0 P ↓ξξ

)

with

P ↑ξξ = P ↓ξξ.

Due to the degeneracy, the Green’s functions of spin up and spin down are
indistinguishable as well and therefore, with Eq. (4.66), we obtain that the PSD
of the quantities X and Y reads

PXY = µspin(G↑X)tP ↑ξξG
↑
Y ,

where the spin multiplicity µspin of Eq. (2.92) is used. The valley degeneracy
can be included by applying Eq. (4.66) once more. The scattering rates in
between the three degenerate valleys give us a PSD of fluctuations for the spin
up electrons which decomposes as

P ↑ξξ =



P 11
ξξ P 12

ξξ P 13
ξξ

P 21
ξξ P 22

ξξ P 23
ξξ

P 31
ξξ P 32

ξξ P 33
ξξ


 ,
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where the submatrices of the PSD are given by

P iiξξ =

(
piidiag piioffdiag

piioffdiag piidiag

)
, P ijξξ =

(
pij pij

pij pij

)
, with i 6= j, and i, j = 1, 2, 3.

Hence, the PSD of terminal currents is given by

PXY = µspin

3∑

i=1

[
µval(G

i,↑
X )t1

(
piidiag + piioffdiag

)
(Gi,↑

Y )∗1

+

2∑

j=1
j 6=i

µ2
val(G

i,↑
X )t1p

ij(Gj,↑
X )∗1

]
,

where (Gi,↑
X )1 denotes the Green’s function of the terminal current at contact X

with a fluctuation in the first true state of the i-th valley of a spin up electron.
Moreover, the valley multiplicity µval is given by Eq. (2.93).

4.8 Simultaneous Small Signal Analysis

In Sect. 3.6.2 about the adjoint method for the small signal analysis, we found
that we need to solve Eq. (3.71) in order to find the admittance parameters.
When we derived the adjoint method for the Green’s functions in Sect. 4.5, we
found that we need to solve Eq. (4.31), which is identical to Eq. (3.71) of the
small signal method. That means that we can solve, say, Eq. (4.31) to find
ye and then insert it into Eq. (3.70) to compute the admittance parameters
and insert it into Eq. (4.30) to compute the Green’s functions of the terminal
currents.

This approach fails when we reduce our systems using their inherent degen-
eracies. The reduction was shown in Sect. 2.4.6 for the BE, which is identical
in the case of the small signal analysis, and in Sect. 4.7 for the Green’s function
equation of the Langevin source approach. Ultimately, we will end up with two
distinct matrices given by something analogous to Eq. (2.91) in the small signal
case (but including the PE) and given by Eq. (4.62) in the Green’s function case.
Note how the multiplicities multiply the columns in the small signal case, while
they multiply the rows in the Green’s function case. Furthermore, the small
signal terminal current contains multiplicities since it is the sum of all contribu-
tions of the degenerate states, while the Green’s function of the terminal current
does not contain multiplicities since it is the response to a fluctuation in a single
true state.

This means that for a general set of multiplicities, we need to choose between
two options. We can solve the system of equations only once to compute both
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the admittance parameters and the Green’s functions of terminal currents but
then we need to disregard reductions in the size of the system from degeneracies.
On the other hand, we can reduce the size by considering degeneracies but then
we need to solve two distinct systems for the admittance parameters and for the
Green’s functions.

Fortunately, there are special cases in which we can both exploit degeneracies
and compute both admittance parameters and Green’s functions by only solving
one system of equations. Assume that we have multiple degenerate groups,
each comprising the same number µ of true states. Then, we can write down
Eq. (3.71) for the admittance parameters as

(
Lf LV
µaf AV

)t(
yf
yV

)
=

(
Ltf µatf
LtV AtV

)(
yf
yV

)
=

(
µ rf
µ rV

)
,

where we explicitly wrote down the multiplicities. Note that Lf , af , and LV
might contain several degenerate groups analogous to Eq. (4.62), each with the
same multiplicity µ, but we do not need to keep track of them individually
and therefore we lumped them together. Furthermore, the r.h.s. of Eq. (3.71)
contains the projection operator on the terminal current and therefore it needs to
be multiplied by the multiplicities if degeneracy is considered. To keep track of
this multiplicity we wrote it down explicitly on the r.h.s. and defined the vectors
rf and rV which contain the r.h.s. but only for the true states considered.

If we substitute,

yf = µy′f (4.68)

and then divide the upper equation of the system by µ, we find

(
Ltf atf
µLtV AtV

)(
y′f
yV

)
=

(
Lf µLV
af AV

)t(
y′f
yV

)
=

(
rf
µ rV

)
. (4.69)

Now recall that the matrix on the l.h.s. is the same as in Eq. (4.62), where the
multiplicity appears in front of LV . Finally, consider the r.h.s. of Eq. (4.31)

to see that the term offdiag
(
AAC,BE
o/e

)t
contains the multiplicity µ in the rows

running over PE indices and therefore, compared to the single particle current
projector of the Green’s function, we will find an additional multiplicity in the
PE related part of the r.h.s. of Eq. (4.69).

Thus, Eq. (4.69) is the system of equations we need to solve in order to
find the Green’s functions of terminal currents, which only differs by a single
substitution. We can repeat the procedure for arbitrary levels of degeneracies
with identical multiplicities for each degenerate group, such as in the present
case, where we consider spin and valley degeneracy.
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Let us summarize what this means for us. First, we can set up the system
of equations for the Green’s functions with the degeneracies spin and valleys
Eq. (4.67). Then we use the resulting matrix to compute ye with Eq. (4.31).
Thereafter, ye can be used directly to compute the Green’s functions of the
terminal current with Eq. (4.30). Finally, we multiply the elements enumerated
by indices of the BE by µspin µval = 4, as in Eq. (4.68), and insert the resulting
vector into Eq. (3.70) to compute the admittance parameters.
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Chapter 5

Results

In this chapter we apply the self-consistent and deterministic solver of the PE,
SE, and BE to a nanoscale double gate nMOSFET. We start out in Sect. 5.1
by introducing the device and the associated spatial and energy grids as well as
parameters involved in the computation of scattering rates. In Sect. 5.2 matters
of stability, convergence, and the time to solve the system are discussed. Fur-
thermore, we examine stationary solutions involving quantities such as electron
densities and currents as well as mobilities and velocities at various operating
voltages. Results concerning the small signal behavior, i.e. quantities such as
admittance parameters and cut-off frequencies, are presented in Sect. 5.3. The
last section is concerned with results involving quantities derived from the power
spectral density (PSD) or the Green’s functions of terminal currents.

The focus of this chapter is to understand how short-channel devices work.
However, we will also simulate devices with longer channels and show their
behavior wherever it is appropriate to provide a context for the results of the
short-channel device.

5.1 Device

We simulate the double gate nMOSFET with a silicon channel depicted in
Fig. 5.1 with three different channel lengths given by LG = 16 nm, 100 nm, and
500 nm. In the remainder, we will refer to the nMOSFETs with the three chan-
nel lengths as the 16 nm, 100 nm, and 500 nm devices. The shades of the silicon
region indicate the donor doping concentration shown in Fig. 5.2. The doping
density of the channel and the contact regions will stay the same throughout
this chapter – we will only vary the length of the channel.

We will operate the device in the common-source configuration described
in Sects. 3.6.3 and 4.6.4. In the stationary case this means that we measure
voltages relative to the source and apply the same bias to both gates.

149
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Figure 5.1: Nanoscale double gate nMOSFET with a silicon channel. The
shades indicate the doping density given in Fig. 5.2. LG is a free parameter
that varies the length of the gate and the lowly doped channel region beneath
it.
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Figure 5.2: One side of the symmetric donor doping density.

5.1.1 Scattering Parameters

We include the scattering processes introduced in Sect. 2.4.2, i.e. the elastic
acoustic phonon scattering, the inter-valley acoustic phonon scattering, and the
surface roughness scattering. For the reasons explained in Sect. 2.4.2, we omit
impurity scattering but adjust the deformation potential Dac of the elastic acous-
tic phonon scattering in the contact regions such that we recover approximately
correct mobilities in these highly doped regions.

While the phonon energies of the inter-valley phonon scattering are consid-
ered fixed, the deformation potential of the elastic acoustic phonon scattering
and the root mean square height and correlation length of the surface rough-
ness scattering are usually considered to be fitting parameters. It is already
known that the deformation potential seems to change its value depending on
the width of the channel [79]. Therefore we need to find a value suitable for the
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Figure 5.3: Infinitely long device to approxi-
mate the SOI MOSFET of Ref. [113]. Trans-
port is in y-direction, where we apply peri-
odic boundary conditions. In order to mimic
an SOI device, we only apply a voltage at
the top gate.
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Figure 5.4: Simulated electron mobility
vs. effective field of the device in Fig. 5.3
(black solid line) as well as experimental re-
sults taken from Ref. [113] for SOIs with a
5.7 nm channel width (blue dashed line).

thinness of the channel of our device. Concerning the parameters of the surface
roughness scattering we must acknowledge that their values depend on which
kind of model is employed. Thus, in practice, the surface roughness parameters
are usually fitted to the mobility at high inversion densities, where the surface
roughness scattering limits the mobility [112].

For the purposes of the present work, we are not interested to fit the scatter-
ing rates to within minute errors of experimental data. Instead, we are satisfied
with the approximate reproduction of the mobilities in the operating range of
our device. To this end, we will simulate the infinitely long silicon-on-insulator
(SOI) device depicted in Fig. 5.3 in order to compute low-field mobilities which
can be compared to the experimental data published in Ref. [113]. Note that
mobilities of nanoscale devices strongly depend on the channel width [86] and
therefore it is imperative to gauge our scattering parameters with experimental
results of devices with similar channel properties.

We can construct an infinitely long device with the device simulator described
in Chap. 2 by using three direct grid points – and two adjoint grid points – in
transport direction and applying periodic boundary conditions. The driving
electric field in transport direction is constructed with a constant gradient of
the potential in between the three direct grid points.

The low-field drift mobility of electrons can be extracted straightforwardly
from the current density j and the driving electric field Eel as

µe =
j

qnEel
,

where n is the electron sheet density computed via Eq. (A.2) and j is the current
density computed via Eq. (A.8).
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In order to compare the mobilities to the results of Ref. [113], we need to
determine the effective field in confinement direction as

Eeff =
q

κSi

(
1

2
n+ wSiND

)
, (5.1)

where κSi is the permittivity of silicon and wSi = 5.7 nm is the width of the silicon
channel. Note that for such a device the average electric field in confinement
direction is not the same as the effective field [69].

We choose the deformation potential as Dac = 20 eV; the surface roughness
scattering parameters as γ = 1.5 [89], ∆ = 0.3 nm, L = 1 nm; and the inter-valley
phonon scattering parameters as in Tab. 2.1. Then we find that the mobility
conforms well to the experimental data of Ref. [113] as is shown in Fig. 5.4.

As is explained in Ref. [112], the mobility is limited by surface roughness
scattering for high effective fields. At low effective fields, Coulomb scattering,
i.e. impurity scattering, limits the mobility. Since we did not include any im-
purity scattering we already expected that the mobility is overestimated at low
effective fields. However, the threshold voltage of the double gate nMOSFET of
Fig. 5.1 is at effective fields of about ≈ 200 kV cm−1 and therefore the mobility
fits reasonably in the on-state of the double gate nMOSFET.1

Since impurity scattering is missing, we need another way to account for the
mobility reduction in the highly doped contact regions. Therefore, we are going
to adjust the deformation potential to reduce the mobilities to values in accord
with Ref. [114]. Note that Ref. [114] specifically explains how the doping density
becomes irrelevant to the mobility past a certain threshold since inactive dopants
only marginally reduce the mobility. Hence, the mobility should be expressed
through the carrier density rather than the doping density. For our simulations,
we use the assumption that the dopants are always fully ionized (see Sect. 2.2 on
the PE). Therefore we find that the carrier density in the highly doped regions is
the same as the doping density (cf. Fig. 5.18). Moreover, Ref. [114] shows that
the type of dopant influences the mobility – for n-type doping, Arsenic leads
to smaller mobilities than Phosphorus. But Ref. [114] is about bulk mobilities
which are generally larger than the mobilities inside a device. We are once again
not interested in the details and will be satisfied to have our mobility in the
approximate range of the experimental data. Thus, we choose the deformation
potentials as given by Tab. 5.1. Note, that simulations were performed for an
effective field of Eeff = 400 kV cm−1 which would be the on-state of the double
gate nMOSFET.

1Generally, we cannot directly compare the effective fields of an SOI MOSFET and a double
gate MOSFET since the shapes of the confining fields are different. The effective field in the
double gate MOSFET was determined by calculating the effective field per gate and then
multiplying by a factor of two, which is approximately the same as using Eq. A.10.
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ND [cm−3] µexp
e (Ref. [114]) [cm2 V−1 s−1] Dac [eV] µe [cm2 V−1 s−1]

1× 1020 ≈ 75 50 77
4× 1020 ≈ 40 65 47

Table 5.1: Adjustment of deformation potential in highly doped contact regions to approximate
the mobilities µexp

e given in Ref. [114] for Phosphorus (left column). The chosen deformation
potentials and the simulator mobilities are shown on the right. Simulations were done for an
effective field of Eeff = 400 kV cm−1.

5.1.2 Contacts

As was shown in Sect. 2.4.3 our source and drain contacts are represented by
generation and recombination (GR) rates relative to fictional thermal baths
representing the source and drain contacts. The GR rates are characterized by
the recombination velocity vGR which is an input parameter that determines the
resistance of the contacts. A high recombination velocity reduces the resistance
and in the limit of vGR → ∞, we recover Dirichlet boundary conditions at the
contacts since in that case the GR rate dwarves all other contributions from the
BE.

Conversely, choosing vGR small increases the resistance of the contacts and
therefore also the noise contributed by the contacts. For this work, we choose a
recombination velocity of

vGR = 106 m s−1, (5.2)

which is neither so small that the contact noise drowns the channel noise, nor
so large that the contacts’ resistance disappears. When fitting to real devices,
we would need to ensure that we match the actual contact resistances.

5.1.3 Discretization

With the scattering parameters determined, we can turn our attention back to
the device shown in Fig. 5.1. Before we can start actual simulations, we need to
estimate the resolution of our discretization described throughout Chap. 2. In
total, we have grid parameters in five dimensions we need to adjust. As always,
the resolution of the grids is a trade-off between accuracy and simulation time
as well as memory requirements. As a measure of accuracy, we use the drain
current in the on-state, i.e. VGS = VDS = 0.7 V, of the 16 nm device. If the drain
current does not change significantly when the grid is chosen finer, we consider
the resolution to be sufficient.

Let us start with the spatial dimensions. In confinement direction, i.e. x-
direction, we solve the Schrödinger equation and obtain a set of wave functions.
Here, we need to make sure that we have sufficiently many grid points to resolve
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the highly localized wave functions during strong inversion. Moreover, too few
grid points will be unable to resolve wave functions of higher subbands. We use
a spacing of ∆x = 0.2 nm which is sufficient since halving the spacing would
change the drain current by less than 1 %.

The transport direction, i.e. y-direction, has to be discretized depending on
the channel length LG because – clearly – we cannot afford the same spatial
resolution for a 500 nm device as for a 16 nm device. The rationale behind the
resolution in transport direction is that the potential energy may not change
significantly between any two grid points. However, the built-in fields due to the
doping profile still exist which means that we have to resolve the contact regions
with the same resolution for all devices. Nevertheless, in the homogeneously
doped channel, the gradient of the potential decreases with the device length.
Thus, we keep the spatial resolution of the highly doped contact regions at a
spacing of ∆y = 0.5 nm while in the lowly doped channel region between the
gates we use a grid spacing of 0.5 nm, 3 nm, and 18 nm for the 16 nm, 100 nm,
and 500 nm devices, respectively. Doubling the resolution in transport direction
changes the drain current by only about 1.5 % in the case of the 16 nm device
and 0.5 % for the 500 nm device.

We also need to limit the number of subbands we consider in the BE. A
higher number of subbands is particularly expensive to consider because each
additional subband involves scattering processes to all other subbands. Since
the subbands are associated with progressively higher eigenvalues and the dis-
tribution function drops off exponentially with higher energies, we can truncate
the series of subbands when the eigenvalues are far away from the lowest eigen-
value. Following this notion, we omit all subbands that are more than about
0.5 eV away from the lowest subband and thus we have 10 subbands in total:
six subbands in the energetically lowest x-valleys on the k-axis in confinement
direction and two subbands in each of the y- and z-valleys. Increasing the total
number of subbands to 17 only changes the drain current by about 1.5 %.

Due to the Fourier expansion described in Sect. 2.4.4, we do not have an
angular dependence but a dependence on the number of harmonics. Naturally,
a higher number of Fourier harmonics coefficients is better suited to represent
anisotropic quantities as for example the distribution function far away from
equilibrium. In equilibrium, however, we find that the distribution function
becomes isotropic in k-space and therefore only the radially symmetric zeroth
harmonic is necessary to describe the solution. The further we are away from
equilibrium the more harmonics we need to describe the anisotropy. Fortunately,
the Fourier harmonics series converges rapidly enough that even in the on-state
of our device, using the zeroth to seventh harmonic is sufficient. Going up to the
15th harmonic would only change the drain current by 0.8 %. For the purposes
of this work, we can ignore negative Fourier harmonics since they are propor-
tional to the sine of the angle relative to the transport direction (cf. Eq. (2.55)).



5.2. STATIONARY SOLUTIONS 155

Therefore the appearance of negative harmonics of the distribution function
would require a force perpendicular to the transport direction, e.g. the Lorentz
force exerted on a carrier by a magnetic field. However, we do not contemplate
such forces in this work.

For the energy grid we usually use a spacing which is a fraction of the largest
inelastic phonon energy. This is due to the mapping of the phonon energies onto
a multiple of the grid spacing (cf. Sect. 2.4.2). The phonon with the largest
energy contributes the strongest to the total scattering rate. Thus, by choosing
the energy grid such that the largest phonon energy can be resolved exactly,
we reduce the error in the inter-valley phonon scattering rate. In the case of
the energy grid, or H-grid, we find that we cannot judge the quality of our
results solely based on the error in the drain current. If it were so, we might
be satisfied with an energy grid of 1/12th the largest phonon energy, which is
∆H = 5.17 meV. However, as we will see in Sect. 5.3.2 the H-transform leads
to discontinuities in the derivatives w.r.t. the potential which can be reduced by
increasing the density of the H-grid. Therefore we settle for a grid spacing of
∆H = 2.583 meV – 1/24th of the largest phonon energy. The error in the on-
state current between the two grid spacings is only about 0.01 %. In principle, for
a given subband, energy space extends from the subband energy to infinity but
since the distribution function declines exponentially with higher energies, we
truncate the energy grid about 0.5 eV above the maximum of the energetically
highest subband.

Using these grid densities we find that the Jacobian of the Newton-Raphson
approach for the stationary solution or the linear systems of the small signal or
noise analyses have approximately 1.3 to 1.9 million variables with about 0.01 %
to 0.02 % non-zero elements – depending on the operating point.

5.2 Stationary Solutions

5.2.1 Numerics and Solver Requirements

In order to solve the linear systems of the BE and PE, we use ILUPACK [68], which
– although single-threaded – is a fast, memory efficient, and reliable sparse linear
system solver based on an incomplete LU-decomposition [115].

As was mentioned in Sect. 2.5.1, the SE needs to be solved at each iteration
of the Gummel loop or the Newton-Raphson approach. The one-dimensional
SE used in our work is not particularly demanding and can be fully solved in
a matter of seconds, i.e. for all subband energies and wave functions. We use
the eigenvalue solver routine DSTEVX for real symmetric and tridiagonal matrices
contained in the LAPACK functions of the Intel Math Kernel Library [72].

The deterministic solver described in Chap. 2 is generally well behaved and
converges reliably. However, there are some caveats. In order to use the Newton-
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Figure 5.6: The total runtime of the simula-
tor, i.e. setting up the system and solving,
vs. the solver time for a stationary operat-
ing point running through an initial Gummel
loop and then using the Newton-Raphson
approach. The drain bias is VDS = 0.7 V
while the gate bias VGS is chosen as indicated
at the data points.

Raphson approach for the PE, SE, and BE described in Sect. 2.5.2, we need to
be close to the solution. If our initial guess is too far off, the Newton-Raphson
approach will – in general – not converge. On the other hand, the Gummel
type iteration described in Sect. 2.5.1 works for a much wider range of initial
guesses. Therefore, we usually use a Gummel type iteration to come close to
the solution and then switch over to the Newton-Raphson approach to make use
of the quadratic convergence. Figure 5.5 shows the convergence of the solver in
terms of the magnitude of the maximum change in the potential. The Gummel
type iteration converges linearly which takes an excessive amount of iterations
in the on-state of the device. Switching over to the Newton-Raphson approach
as soon as we are somewhat close to the solution, we can see how the Newton-
Raphson approach convergences rapidly after just a few iterations even for high
bias operating conditions. The accuracy of the solution is only limited by the
machine precision.

Prior to our own publication on the full Newton-Raphson approach [63],
Ref. [29] already improved upon the convergence of the Gummel loop by imple-
menting a partial Newton-Raphson scheme, i.e. they used an approximation to
the derivative of the subband energy w.r.t. the potential and omitted pertur-
bations to the wave functions. In that case, convergence is still linear although
somewhat faster than the Gummel type iteration. Nevertheless, it cannot possi-
bly compete with the quadratic convergence of the full Newton-Raphson scheme.
More importantly, the Newton-Raphson approach is an essential ingredient to
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the setup of self-consistent small signal and noise analyses.

The quadratic convergence is useful in another way: we can solve our sys-
tem of equations up to errors within the machine precision without excessive
iterations. For stationary solutions it is not necessary to solve our equations
up to errors of 10−16 V in the potential, however, the small signal and noise
analyses have operating frequencies in which sensitivity to errors in the sta-
tionary solution has an impact and therefore a proper convergence is essential
(cf. Sect. 5.3.1).

In order to solve the system of equations with the discretization described
in Sect. 5.1.3, we use computers with two 12-core Intel Xeon E5-2690 v3 CPUs
at 2.6 GHz and with 384GB of RAM. For certain simulations, e.g. for doubling
the grid density of one dimension, the memory requirements where higher and
machines with up to 768GB of RAM were used.

Depending on the operating point the system of equations with the grid
densities described in Sect. 5.1.3 can be solved within a day or less. Figure 5.6
shows total time of running the simulator – which includes the time to set up the
system of equations – and the solver time until full convergence of the Newton-
Raphson based approach with an initial Gummel type iteration. Note that
although solving the system of equations takes a significant amount of time, we
need a similar time simply to set up the whole matrix for each iteration. Bear
in mind that this is the time for the computation of a single operating point.
The full characterization of a device needs up to two orders of magnitude more
CPU time.

5.2.2 Distribution Function

The direct result of our solver is the distribution function fνm(y,H). In order to
visualize it for each subband, we need to compute

fν(y,k(E, φ)) =
∑

m

fνm(y,H − εν(y))Ym(φ)

with E = H−εν(y). In particular, we are interested in the distribution function
in the channel, where the electron velocity is high, and at the drain contact, in
order to inspect how our contacts work. Figure 5.7 shows the two positions A

and B where we will visualize f .

First, let us take a look at the device with LG = 500 nm in the on-state, i.e.
VGS = VDS = 0.7 V. Figure 5.8 shows the distribution function of the energeti-
cally lowest subband in the center of the device at position A. The energetically
lowest subband contains most of the electrons and therefore it is representative
of how the distribution function behaves. It is evident that the distribution
function is so close to equilibrium that it seems completely radially symmetric.
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This is typical for scattering dominated transport and is due to the length of
the device being much larger than the mean free path of electrons.

Evaluating the distribution function of the 16 nm device in the center yields
Fig. 5.9 which paints another picture. The crescent moon shape is typical for
ballistic transport far from equilibrium and it manifests due to the strong ac-
celeration in transport direction (positive y-direction) with only little scattering
back to smaller energies which would randomize the direction of electron mo-
menta. Note that we simulated the distribution function shown in Fig. 5.9 using
up to and including the 15th Fourier harmonic in order to better visualize the
non-equilibrium distribution function. Even with this many Fourier harmonics,
we can observe how the distribution function becomes slightly negative, which
should not happen in principle. The negative parts of the distribution function
are an artifact of the truncation of the Fourier series and they become smaller
with an increasing number of harmonics. Nevertheless, in practice it is accept-
able that the distribution function becomes slightly negative in the ballistic
regime since the BE remains stable and the associated errors in the observables
remain negligible. In our case, the difference between using up the 7th Fourier
harmonic and using up to the 15th Fourier harmonic is a mere 0.8 % in the
stationary drain current of the on-state.

From the distribution function of the 16 nm device in the channel it is imme-
diately clear that a model based on the drift-diffusion equations cannot describe
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the device adequately as the derivation of the drift-diffusion model relies on the
assumption that the distribution function is radially symmetric, i.e. close to
equilibrium [9, 10].

As was mentioned in Sect. 5.1.1, we adjust the deformation potential in the
contact regions to account for the mobility reduction in the highly doped contact
regions. Figure 5.10 shows the distribution function of the energetically lowest
subband at the drain contact of the 16 nm device at VGS = VDS = 0.7 V. Since
the distribution function is radially symmetric at these mobilities, scattering acts
as a global resistance. Therefore the adjustment of the deformation potential
in the contact regions is a reasonable approach to approximate the mobility
reduction.

Figure 5.10 also makes it obvious how important the Pauli principle is. A
large portion of the low-energy region is fully occupied and therefore no scatter-
ing into these states is possible. Since the drift-diffusion model does not contain
the Pauli principle, this is another argument as to why the BE is necessary to
model the transport of such devices.
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ically lowest subband of the 16 nm device for
VGS = 0.7 V and two different drain biases,
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5.2.3 Current and Subband Energies

In the stationary case, the continuity equation shown in Eq. (3.23) implies that
the current throughout the device is constant. Therefore the stationary drain
current equals the current density

I ′D ≡ qj(y) = q µspin µval

∑

ν

∫ ∞

εν(y)

d2k

(2π)2
vν(k)fν(y,k)

= q µspin µval

∑

ν

(T vHV)yyZ
v

∫ ∞

εν(y)
dH (vvy)1(y,H) fν1 (y,H),

where I ′D is defined as the charge current from drain to source per length in
z-direction, i.e. the current at the drain pointing inwards of the device (see
Eq. (A.9) for a discretization of the current density). Note that since our k-
space is Herring-Vogt transformed, the group velocity carries the transformation
matrix with itself (cf. Eq. (2.50)). Equivalently we can also evaluate the terminal
current through the Ramo-Shockley theorem as if there were no small signal
perturbation (cf. Eq. (3.44)).

The drain current vs. the drain voltage of the 16 nm device is shown in
Fig. 5.11. Due to the short channel, the device is strongly affected by drain-
induced barrier lowering (DIBL) [5, 116]. Figure 5.12 shows the subband energy
of the energetically lowest subband for VGS = 0.7 V and two different drain biases
VDS = 0.1 V and 0.7 V. When the drain bias increases, the subband energy on
the drain side decreases and pulls down the maximum of the subband energy in
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the channel. Then the potential energy barrier that electrons need to surpass
decreases and therefore more current can flow from source to drain.

In contrast to that, the current in the 100 nm and 500 nm devices shown in
Fig. 5.13 saturates since the potential of the drain is too far from the subband
maximum to influence the energy barrier in the channel as is shown in Fig. 5.14.
The drain current vs. the gate voltage of the 16 nm device, on both a linear and
logarithmic scale, is shown in Fig 5.15. The device’s threshold voltage can be
read off as about Vth ≈ 0.35 V. Note how in all these plots, even well below
the threshold voltage, the current does not show any numerical noise which is a
testament to the deterministic nature of our simulator.

With the deterministic solver, we can also plot the current density against
position and energy space and hence resolve which carrier states contribute to
the transport. The density of the current in energy space is defined as

j(y) =:

∫
dHJ (y,H),

which, in discretized H-space, is the contribution of each energy grid point to
the current density. Figure 5.16 shows a contour plot of J in y- and H-space of
the 500 nm device. The white region in the plot represents inaccessible energies
below the energetically lowest subband energy. Any conducting electron states
must have higher energies. Thus the lowest subband energy constitutes a barrier
that needs to be surpassed. Carriers which were injected with high enough
energies will then cascade down the slope to the drain side, always staying close
to the conduction band edge. Since transport in the 500 nm device is scattering
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Figure 5.15: Drain current I ′D vs. gate voltage VGS of the 16 nm device at
VDS = 0.7 V on both a logarithmic (solid; left axis) and linear scale (dashed;
right axis).

dominated, carriers will scatter to lower energies as soon as they picked up
enough kinetic energy.

The same plot for the 16 nm device is shown in Fig. 5.17. Here, electrons
seem to move mostly along horizontal lines – along constant H values – from
source to drain, since the mean free path is on the order of magnitude of the
device length. This is what is called ballistic transport where energy is only
converted between potential and kinetic types but none of it is dissipated through
interactions with the environment by scattering processes. Naturally, since there
is still some degree of scattering left, we can observe that the current density is
not a perfectly horizontal band but smears out to lower energies in the vicinity
of the drain contact.

5.2.4 Electron Density, Velocity, and Mean Energy

The electron sheet density is given by

n(y) = µspin µval

∑

ν

nν(y) = µspin µval
1

Y0

∑

ν

∫ ∞

εν(y)
dH Zvfν0 (y,H) (5.3)

and it is depicted in Fig. 5.18 for the 16 nm device at VDS = 0.7 V (see Eq. (A.5)
for the discretization of the density). In the contact regions, the electron density
is high due to the high doping density. In the channel, we can control the
density with the gate voltage over many orders of magnitude. Note that even
for VGS = −0.7 V, the deterministic solver is able to compute a perfectly smooth
electron density even though the difference between the density in the channel
and at the contacts is more than 18 orders of magnitude.

In order to plot the density in confinement direction, we need to multiply the
density of a subband by the distribution of electrons in confinement direction,
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which is given by the probability of finding an electron, i.e. the wave function
squared:

n(r) = µspin µval

∑

ν

nν(y)|Ψν(r)|2.

Figure 5.19 shows the electron density throughout the device for VDS = 0.7 V
and VGS = 0 V, i.e. in the off-state. We can clearly see how the doping density
increases the density in the vicinity of the source and drain contacts (cf. Fig. 5.1).
In the channel the electron density is reduced by about ten orders of magnitude
due to the low bias applied to the gates. On the other hand, applying a gate bias
of VGS = 0.7 V to both gates, electrons are accumulated in the channel region
as is shown in Fig. 5.20, where the density only drops by about two orders of
magnitudes.

The average electron velocity is given by

v(y) =
j(y)

n(y)

and it is shown in Fig. 5.21 for the 16 nm device in the on-state resulting from a
simulation with up to the 7th Fourier harmonic and a simulation with up to the
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Figure 5.18: Electron sheet density n(y) of the 16 nm device at VDS = 0.7 V
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15th harmonic. Note how the velocity is small in the contact regions and then
increases in the channel until it surpasses the electron velocity of bulk silicon
of about 107 cm s−1. This is called a velocity overshoot and it is typical for
the electron behavior in devices. Usually the velocity’s maximum is lower than
what we see in our case. This is because we approximate the band structure
by the simplistic parabolic model (see Sect. 2.4.1). A correction through a non-
parabolicity factor [54, 70] or a model based on a more general interpolation
approach as in Ref. [117] would reduce the maximum velocity. We choose to use
the parabolic band structure since it is the fastest method and it has sufficient
accuracy for our needs. Note that velocity overshoot cannot be reproduced with
a drift-diffusion model because it is tantamount to carrier heating which is only
described by the higher moments contained in the hydrodynamic approach.

From Fig. 5.21 we can also learn that the velocity for a simulation with up to
the 15th harmonic is only marginally different from our usual simulations using
up the 7th Fourier harmonic. Therefore, we conclude that simulations using up
to the 7th harmonic accurately represent the actual solution of our system.

The average energy of electrons as measured relative to the energetically
lowest subband ενmin is given by (see Eq. (A.11) for the discretization)

〈E〉(y) =
µspin µval

∑
ν

∫
d2k

(2π)2 [Ev(k) + εν(y)− ενmin(y)] fν(y,k)

µspin µval
∑

ν

∫
d2k

(2π)2 fν(y,k)

=
µspin µval

Y0 n(y)

∑

ν

Zv
∫
dH [H − ενmin(y)] fν0 (y,H).
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Figure 5.20: Electron density n(r) as a func-
tion of x and y throughout the 16 nm device
for VDS = VGS = 0.7 V.

The average energy of the 16 nm device is shown in Fig. 5.22 with and without
the Pauli principle. Note that the mean energy in the highly doped contact
regions is higher when the Pauli principle is included since it prohibits carriers
to lose energy (cf. Fig. 5.10).

5.3 Small Signal Analysis

In this section, we will compute the small signal parameters of the device shown
in Fig. 5.1. Although we will use the full admittance matrix of Eq. (3.72) in order
to show that our device satisfies conservation laws, for the actual results we will
only refer to the device in common-source configuration. How to arrive at the
admittance parameters of the common-source configuration is straightforward
and has been shown in Sect. 3.6.3.

We usually find that the small signal results are numerically sound, albeit
with some caveats. First, we will see in Sect. 5.3.1 that conservation laws and
symmetries are not perfectly satisfied but with errors that depend on the applied
biases and on the frequency of the small signal bias. But barring extreme con-
ditions, we can compute small signal quantities over a wide range of operating
conditions, including the deep sub-threshold region and from a few Hz up to and
beyond the THz range.

Second, we will see in Sect. 5.3.2 that due to the H-transformation the
derivatives of any quantity w.r.t. the potential or w.r.t. an applied bias is nec-
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Figure 5.21: Average electron velocity v(y)
in the 16 nm device at VDS = VGS = 0.7 V
computed using up to the 7th Fourier har-
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Figure 5.22: Average electron energy 〈E〉(y)
in the 16 nm device at VDS = VGS = 0.7 V
including the Pauli principle (black solid
line) and excluding the Pauli principle (red
dashed line).

essarily discontinuous. This is an artifact of the H-transformation that cannot
be avoided but it can be ameliorated by choosing a fine H-grid spacing.

Solving for the small signal parameters involves the solution of the system
of equations shown in Eq. (3.64) or in the adjoint form of Eq. (3.71) with four
different vectors on the right hand side, corresponding to small signal biases
applied at the four contacts of our device. Since Eqs. (3.64) and (3.71) are
linear systems, we can solve them in one step and, moreover, we only need to
perform a single LU-decomposition for the four different contact bias vectors on
the right hand side. Thus, for a single operating point, VGS and VDS, and a
single frequency, f , the system takes about two hours to completely set up and
an additional half hour to solve. When computing multiple frequencies, most of
the set up time reduced since most terms are not frequency dependent. Bear in
mind that for a full characterization of a device, we need to know the admittance
parameters at various frequencies and operating points for which we also need
the respective stationary solutions. The total time for a full characterization is
therefore at least two to three orders of magnitude larger (cf. Fig. 5.6 for the
total time to solve for the stationary solution).

In the following we will first make sure that our device fulfills essential con-
servation laws and symmetries and we will estimate the size of numerical errors
we make. Then we will proceed to show the admittance parameters as well as
cutoff frequencies and maximum oscillation frequencies. Note that any small
signal quantity shown here relates to the intrinsic properties of the device. In
order to make a comparison to a real device, we would need to embed the device
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in a circuit, adding various capacitances and resistances which would modify the
small signal quantities.

5.3.1 Conservation Laws and Symmetries

We want to verify that our solver yields physically sound solutions. This can be
checked by looking for conservation laws or basic properties of the device that
must be fulfilled. The most obvious property is that the small signal current is
conserved, i.e.

I ′TG + I ′BG + I ′D + I ′S = 0.

Applying a small signal bias to one contact at a time, we find that the conser-
vation of current implies

∑

C

Y ′C,C′ = 0, C, C ′ ∈ {TG,BG,D,S}.

Note that due to the calculation of the small signal terminal current via the
Ramo-Shockley theorem, we expect the current to be conserved by construction.
Figure 5.23 shows the cumulative relative error defined as

∆Y ′curr :=
∑

C′

∣∣∣
∑

C Y
′
C,C′

∣∣∣
∑

C |Y ′C,C′ |

for different operating conditions and frequencies. For high gate biases the error
is quite close to the accuracy of double precision floating point numbers. But
we can also see that for low gate biases and low frequencies the relative errors
increase. They are still small enough to be manageable but it shows us the ceiling
of accuracy we can expect at these operating conditions. It is not clear what
exactly leads to the deterioration of the numerical properties but we speculate
that we would need to expand the system of equations around zero frequency in
order to reduce numerical errors in the low frequency domain.

In Sect. 3.5 a lot of work has been put into understanding and restoring
reciprocity numerically. To recall, in equilibrium a device is reciprocal if the
current flowing through a contact C when a small signal bias is applied to a
contact C ′ is the same as the current flowing through the contact C ′ if a small
signal bias is applied to contact C, irrespective of the shape or other properties
of the contacts [51]. Thus, reciprocity is a statement about the symmetry of the
admittance matrix in equilibrium:

Y ′C,C′
equilibrium

= Y ′C′,C , C, C ′ ∈ {TG,BG,D,S}.



168 CHAPTER 5. RESULTS

101 105 109

10−12
10−11
10−10
10−9
10−8
10−7
10−6

0.7 V
0.5 V
0.3 V

0.1 V

0.0 V

f [Hz]

∆
Y
′ cu
rr

Figure 5.23: Cumulative relative error
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Figure 5.24: Cumulative relative error ∆Y ′rec

of the 16 nm device for VDS = 0 V and
VGS = 0 V, 0.1 V, 0.3 V, 0.5 V, and 0.7 V as
indicated.

Let us express the cumulative relative error or the deviation from reciprocity as

∆Y ′rec :=
1

2

∑

C,C′

|YC,C′ − YC′,C |
|YC,C′ |+ |YC′,C |

,

where we divided by two since the sum over both contacts counts its symmetric
summands twice. The relative errors of reciprocity are shown in Fig. 5.24 proving
that the procedure to restore reciprocity derived in Sect. 3.5.2 is effective. Bear
in mind that without the procedure, reciprocity is violated at least in the tens
of percent, therefore a reduction to a relative error in the range of 10−3 to 10−8

is a noteworthy improvement.

The errors in the reciprocity give us a better estimate for the numerical
accuracy of our results. Any result close to equilibrium cannot be more accurate
than the error we find in the reciprocity. This is also true for the passivity of the
device in equilibrium. A device is considered passive if the matrix Y + (Y ∗)t is
positive definite, i.e. it has positive eigenvalues. Note that Y +(Y ∗)t is Hermitian
and therefore its eigenvalues are strictly real. In order to see whether the device
is passive, we want to compute the relative minimum eigenvalue defined as

∆λmin :=
min({λi})∑

i |λi|
,

where λi denotes the i-th eigenvalue and min({λi}) denotes the smallest eigen-
value. Thus, if ∆λ becomes negative, the device becomes active. Prior to the
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Figure 5.25: Relative error in minimum eigenvalue ∆λmin of the 16 nm de-
vice for VDS = 0 V and VGS = 0 V, 0.1 V, and 0.3 V as indicated. Curves for
gate biases above 0.3 V have even smaller values and would lie on top of the
0.3 V curve. Therefore they were omitted in this plot.

reciprocity restoration procedure of Sect. 3.5.2 the device would become active
for certain combinations of operating points and frequencies, but afterwards
Fig. 5.25 shows that although the minimal eigenvalue may become negative, its
value is in agreement with the value zero considering our previous estimates for
the numerical error.

5.3.2 Admittance Parameters

The admittance parameters are the small signal response of our device to an
applied small signal bias. They tell us about capacitances and conductances
inherent to our device. To understand the meaning of each of the parameters,
we can express a MOSFET in common-source configuration with a simple small
signal equivalent circuit as in Fig. 5.26. Then the admittance parameters read

Ŷ equiv =

(
iω(CGS+CDG)

1+iω(CGS+CDG)RG

−iωCDG
1+iω(CGS+CDG)RG

gm−iωCDG

1+iω(CGS+CDG)RG

iωCDG(1+gmRG+iωCGSRG)
1+iω(CGS+CDG)RG

+ 1
RDS

)
, (5.4)

which makes it apparent what role each of the capacitances and resistances
plays. Here, CGS is the gate-source capacitance, CDG is the drain-gate capac-
itance, RG is the gate resistance, RDS is the channel resistance, and gm is the
transconductance.

Obviously the admittance parameters of the equivalent circuit are only a
crude approximation to reality and equivalent circuits will never be able to cap-
ture the complexities of an actual BE solver. However, they enable us to develop
an intuition for the most important aspects of a device. Keep in mind that our
simulator describes the naked device. To fit such a device to experimental data,
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Figure 5.26: Simple small signal equivalent circuit of a MOSFET in
common-source configuration.

we would have to embed it by adding additional gate, source, and drain resis-
tances as well as external parasitic capacitances due to the way the device is
contacted.

Let us take a look at the real and imaginary parts of the gate self-admittance
Y ′GG. From Eq. (5.4) it is clear that up to linear order in the frequency, i.e. at very
low frequencies, we will only find an imaginary part to Y ′GG which is proportional
to the sum of the capacitances of the gate w.r.t. the other contacts. Indeed,
Fig. 5.27 shows the real and imaginary parts for the 16 nm device of the simulated
gate self-admittance which reflect this behavior at lower frequencies. In the THz
region however, we find that Y equiv

GG is insufficient to describe the MOSFET’s
behavior. The bumps of the admittance parameter beyond a THz are not a
numerical problem but they occur due to plasma oscillations within the device.
At frequencies lower than about a MHz, we observe that the real part is drowned
out by numerical noise but since the real part around these frequencies is orders
of magnitudes smaller than the imaginary part, we do not need to be concerned
by this.

Similarly, Fig. 5.28, which shows the real and imaginary parts of the simu-
lated Y ′GD reflects the capacitance between the drain and gate at lower frequen-
cies (see Eq. (5.4)). At frequencies beyond a THz, we see the impact of plasma
oscillations. Similar to the gate self-admittance, we also see how the real part
of Y ′GD is governed by numerical noise but we can also note in this case that the
real part for these frequencies is negligible compared to the imaginary part.

The admittance parameter Y ′DG expresses the change in drain current when
the gate voltage is changed. The gradient in drain current is encoded in the
transconductance gm and it is the dominant contribution to zeroth order in
frequency. Figure 5.29 shows the simulated real and imaginary parts of Y ′DG

which – as is obvious from Y equiv
DG – has a constant real part at lower frequencies

due to the transconductance, while its imaginary part is linear in the frequency.
Also note the strong impact of plasma oscillations on this parameter in the THz



5.3. SMALL SIGNAL ANALYSIS 171

102 106 1010 1014
10−12

10−3

106

|R
e(
Y
′

G
G
)|

|Im(
Y
′
GG
)|

f [Hz]

Y
′ G
G
[A

V
−
1
m
−
1
]

Figure 5.27: Real and imaginary parts of ad-
mittance parameter Y ′GG vs. frequency of the
16 nm device at VDS = VGS = 0.7 V.
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Figure 5.28: Real and imaginary parts of ad-
mittance parameter Y ′GD vs. frequency of the
16 nm device at VDS = VGS = 0.7 V.
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Figure 5.29: Real and imaginary parts of ad-
mittance parameter Y ′DG vs. frequency of the
16 nm device at VDS = VGS = 0.7 V.
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Figure 5.30: Real and imaginary parts of ad-
mittance parameter Y ′DD vs. frequency of the
16 nm device at VDS = VGS = 0.7 V.

region.

The drain self-admittance Y ′DD has a constant contribution to the real part
due to the channel resistance RDS while the imaginary part is, again, linear at
lower frequencies, as shown in Fig. 5.30. Both Y ′DG and Y ′DD are unaffected by
numerical noise at low frequencies, however, plasma oscillations are visible in
both admittance parameters at frequencies beyond a THz.

At this point we want to draw attention to the upper frequency limit of our
approach. In Figs. 5.27, 5.28, 5.29, and 5.30, we have plotted the admittance
parameters up until a frequency of 1015 Hz but while our solver can easily handle
these and even higher frequencies, our approach cannot yield reasonable results
anymore. Frequencies beyond 1014 Hz fall within the visible spectrum and the
energies associated with these waves are high enough to excite carriers into higher
subbands by absorption. Since the physics of such processes are not included in
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Figure 5.31: Absolute value of Y ′GD vs. VGS

of the 16 nm device at VDS = 0.7 V and
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nuities in the derivative of the density nν
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our approach, we will only consider frequencies up to 1014 Hz in the remainder
of this work.

In order to fully understand the numerical properties of the small signal anal-
ysis, we want to point out how the admittance parameters behave as functions
of contact biases. To this end, we plotted the absolute value of Y ′DG vs. the gate
bias for VDS = 0.7 V and for a frequency of 100 kHz in Fig. 5.31. In contrast to
the plots w.r.t. the frequency, this curve is not smooth. In fact the curve shown
in Fig. 5.31 has a discontinuous derivative w.r.t. the gate bias. These discontinu-
ities are a direct consequence of the H-transformation which can be illustrated
using any function that contains an integral over k-space – or H-space – like the
terminal current and thus the admittance parameters. What happens when we
change the gate bias is that the potential in the device changes and therefore
the subband energies change. But after the H-transformation, the lowest box in
H-space depends on the subband energy and therefore we find for the derivative
of a quantity like, e.g., the density:

∂nν(yi)

∂εν(yi)
=

∂

∂εν(yi)


 1

Y0

∑

j

Zvfν(yi, Hj)∆H
ν(yi, Hj)


 = − 1

Y0
Zvfν(yi, Hjmin),

where the H-box is defined as in Eq. (2.75) and jmin is the index of the H-grid
denoting the lowest non-zero H-box, i.e. the box where the lower boundary is
the subband energy. Figure 5.32 illustrates the discontinuous derivative. Say we
have some terminal bias which we increase a little bit, then we will see that the
potential will increase a little bit and the subband energies will decrease. But
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the small decrease could just be enough for the subband energy to move from
one box to another which will change jmin and with it the H-grid point where
the rest of the density is evaluated. Therefore a small change in the contact bias
can change the derivative of the density w.r.t. that contact bias abruptly.

This does not only apply to the density but to all quantities derived via an
integration over k-space and therefore we find that the admittance parameters
also suffer from these discontinuities as shown in Fig. 5.31. The strength of this
numerical issue depends an various circumstances. First of all, if we increase
the scattering, the discontinuities become smaller. Second, the dimensionality
of k-space affects the discontinuities strongly since the density of states Zv

at the subband energy is different for 1D, 2D, and 3D electron gases. The
discontinuities present themselves the worst in the 1D case since the relative
volume close to k = 0 is largest compared to the rest of the integration. In
other words, the density of states becomes large for small energies and therefore
it enhances the discontinuities.

Fortunately, the illustration in Fig. 5.32 also shows us how to mitigate the
effect of the discontinuities. Decreasing the spacing of the H-grid to ∆H =
2.585 meV as was explained in Sect. 5.1.3 is sufficient to make the effects of the
discontinuities on observables less noticeable. As a side note we should bring
to attention that these discontinuities are a reason why large signal simulations
using the H-transformation are numerically not feasible.

5.3.3 Stability

We want to investigate the stability of our device in order to show that the
plasma oscillations occurring in the THz frequency range cannot be used for self-
amplifying THz wave generation. The three conditions that must be satisfied
for a device to be unconditionally stable are given by [118]

Re(Y ′GG) > 0, Re(Y ′DD) > 0, K > 1,

where the Rollet factor is given by

K =
2Re(Y ′GG) Re(Y ′DD)− Re(Y ′DG Y

′
GD)

|Y ′DG Y
′

GD|
.

Conversely, a device that violates any of these conditions at some operating
point and frequency can become unstable and generate plasma waves by itself
for some combination of passive generator and load admittances.

Figure 5.33 shows the real parts of the gate and drain self-admittances in the
on-state of the device for the THz frequency range. Note that both are positive
over the whole frequency range. The Rollet factor is shown in Fig. 5.34 and thus
we find that the device is unconditionally stable beyond 3 THz in the on-state.
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Figure 5.33: Real parts of Y ′GG and Y ′DD

vs. frequency for VGS = VDS = 0.7 V of the
16 nm device.
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Figure 5.34: Rollet factor K vs. frequency
of the 16 nm device for VGS = VDS = 0.7 V.
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5.3.4 Cutoff and Maximum Oscillation Frequency

From the admittance parameters, we can directly calculate the hybrid parame-
ters. One particularly interesting hybrid parameter is

H ′DG :=
Y ′DG

Y ′GG

∣∣∣∣
V D

appl=0

,

which is the ratio of the small signal currents of the drain and gate contacts when
a small signal bias is applied to the gate. Thus, when H ′DG – shown in Fig. 5.35
– drops off to unity, there is no small signal current amplification anymore. The
frequency at which this happens is defined as the cutoff frequency fT. It can
either be computed directly by finding the frequency at which |H ′DG(fT)| = 1 or
by noting that H ′DG can be extrapolated from a known frequency f0 as

fT ≈ |H ′DG(f0)|f0. (5.5)

For this work, we compute the cutoff frequency using the approximation of
Eq. (5.5) since iterating until we approached the cutoff frequency is too time
consuming. In any case, the extrapolated cutoff frequency is sufficiently accurate
for all practical purposes. Figure 5.36 shows the cutoff frequencies for the three
devices. Note that these are for the intrinsic devices, i.e. no embedding into
a circuit has been performed. If we embedded the device into a real circuit,
we would find, e.g., a larger gate self-admittance which would reduce the cutoff
frequencies.
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Figure 5.36: Cutoff frequency fT vs. VGS of
the 16 nm (black solid line), 100 nm, (red
dashed line) and 500 nm (blue dotted line)
devices at VDS = 0.7 V.

Figure 5.36 shows exactly what is to be expected from the cutoff frequencies:
the shorter the channel, the higher the cutoff frequency. Nevertheless, we can
still observe the high fidelity of the results even in the deep sub-threshold. Only
in the 16 nm device in the deep sub-threshold region can we see the consequence
of the discontinuities in the derivatives w.r.t. the gate bias but only if we look
carefully.

Another figure of merit that is used to compare device characteristics is
Mason’s invariant or the unilateral gain [119]. It is defined as

U =
|Y ′DG − Y ′GD|2

4
(

Re(Y ′GG)Re(Y ′DD)− Re(Y ′GD)Re(Y ′DG)
)

and it is shown in Fig. 5.37 for the three devices. Recall that at low frequencies
the real parts of Y ′GG and Y ′GD were drowned by numerical noise (cf. Figs. 5.27
and 5.28) and therefore the unilateral gain will be meaningless in this frequency
range.

The maximum oscillation frequency fmax is the frequency at which U(fmax) =
1 holds. In the same way as the cutoff frequency, it can be extrapolated from
some lower frequency f0 using

f2
max ≈ U(f0)f2

0 .

Bear in mind that f0 needs to be chosen above the aforementioned numerical
noise in the admittance parameters. In the case of VGS = VDS = 0.7 V shown
in Fig. 5.37 this is somewhere above 108 Hz. Figure 5.38 shows the maximum
oscillation frequency for the three devices. Once again, the largest values are
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Figure 5.38: Maximum oscillation frequency
fmax vs. VGS of the 16 nm (black solid line),
100 nm (red dashed line), and 500 nm (blue
dotted line), devices at VDS = 0.7 V.

found for the device with the shortest channel. An interesting observation for
the 16 nm device is that the maximum oscillation frequency has a maximum
around VGS = 0.5 V.

5.4 Noise Analysis

The main results of this work concern the self-consistent noise solved with the
system of equations comprising PE, SE, and BE. First, we want to present
the resulting PSDs in Sect. 5.4.1 in order to get an understanding of what the
noise of the terminal currents looks like and what the quality of our results is.
Then, in Sect. 5.4.2, we want to verify that our approach to the calculation of
noise is indeed reasonable by checking that the simulator fulfills the Nyquist
theorem, which is a special form of the fluctuation-dissipation theorem. Once
we established the veracity of our model, we compute the usual figures of merit
in Sects. 5.4.3 through 5.4.5 consisting of the Fano factor, drain and gate excess
noise factors, as well as the cross-correlation.

We will also investigate the qualitative nature of noise in our 16 nm nanoscale
double gate MOSFET and find its origin within the device in Sect. 5.4.6. And
finally we will investigate and understand the nature of noise in our nanoscale
device in Sect. 5.4.7.

We will continually compare our results to the 100 nm and 500 nm devices
and reference similar findings in literature in order to demonstrate the integrity
of our work.

Note that we can compute admittance parameters and Green’s functions of
the terminal current at the same time (see Sect. 4.8). Therefore computing the
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Figure 5.39: Power spectral densities PGG
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Figure 5.40: Absolute values of real (black
line) and imaginary (red line) parts of PGD

vs. frequency of the 16 nm device at VDS =
VGS = 0.7 V.

PSDs only takes the additional time needed by Eqs. (4.36) and (4.38). Since
this entails the integration over all coordinates, the time we measure is about
an hour for a single operating point and frequency.

5.4.1 Power Spectral Density

To get a sense for the noise computed in our devices, we want to take a look
at the PSDs. Recall that the PSD is twice the Fourier transform of the corre-
lation function as shown in Eq. 4.2. That means that the PSDs PGG and PDD

express the variance of the gate and drain terminal current in frequency space,
respectively, or – in other words – they quantify the amount of noise contained
in the terminal currents. In Eq. (4.3) we noted that PGG and PDD need to be
real. In the numerical computation we find this to be true – within numerical
errors around the machine precision – and therefore we will assume that the
PSDs PGG and PDD are purely real in the remainder of this work.

Figure 5.39 shows the gate and drain PSDs in the on-state of the 16 nm
device. The PSDs exhibit a high numeric fidelity from very low frequencies to
beyond the THz. We do not encounter a numerical error floor as in the gate self-
admittance shown in Fig. 5.27. In a real device we would encounter flicker noise
at low frequencies, but since we do not include the physical processes leading to
such noise in our simulations, our PSDs cannot include include it either.

Since the two cross PSDs are related through

PGD = P ∗DG,

we will only ever show one cross PSD, i.e. PGD, in the remainder of this work.
The cross PSD is defined as twice the Fourier transform of the correlation func-



178 CHAPTER 5. RESULTS

tion between the gate and drain terminal currents. Assuming that there is a
fluctuation occurring with some frequency somewhere in the device, the cross
PSD PGD will tell us how the gate and drain terminal current fluctuations will
behave. Since the coupling between the gate and the channel is based on the
involved capacitances (cf. Eq. (5.4)), we expect that a fluctuation in the channel
will impact the drain terminal current directly while the resulting gate termi-
nal current is phase shifted since it is mediated by the displacement current.
It follows that at low frequencies the resulting cross PSD PGD should contain
the purely real drain terminal current and the purely imaginary gate terminal
current Green’s function (cf. Eqs. (4.20), (4.36), and (4.38)) and since the tran-
sition rate is purely real, the overall PSD is expected to be purely imaginary to
leading order.

Indeed, at low frequencies we observe the real and imaginary parts of PGD as
shown in Fig. 5.40 where the total PSD is dominated by its imaginary part. Also
note that – similar to Fig. 5.28 – the real part of the cross PSD at frequencies
below 105 Hz is solely governed by numerical errors but since the imaginary part
is larger by a few orders of magnitude, we can safely ignore its values in the
low frequency domain. As we approach the cutoff frequency of the 16 nm device
(cf. Fig. 5.36), we see that the above argument on the real and imaginary parts
of the PGD falls apart. Close to the cutoff frequency both the Green’s functions
of the gate and drain terminal currents have real and imaginary parts stemming
from the displacement currents but also from the time-derivative in the LBE
due to the non-quasistationary time-evolution.

5.4.2 Nyquist Theorem

The response of a system to fluctuations and the response of the system to
external perturbations are governed by the same physical processes and therefore
there exists a relation between the two which is compiled in the fluctuation-
dissipation theorem [120, 121, 122, 123]. But for our present purposes we only
need a special form of this relation which historically preceded the fluctuation-
dissipation theorem and is often referred to as the Nyquist theorem [108]. In our
current notation, it states that in equilibrium, the noise in a system is related
to the small signal response by

PC,C
equilibrium

= 4kBT Re(Y ′C,C). (5.6)

Note that the admittance Y contains the effects on terminal currents of the
system to an external small signal bias applied at a contact while the PSD P
represents the correlation of terminal currents in frequency space due to internal
fluctuations caused by scattering processes as well as GR processes.

Our simulator conforms excellently with the Nyquist theorem as is shown in
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Figure 5.41: Verification of the Nyquist theorem. PSDs (top) and relative
error of the noise as given by the Nyquist theorem (bottom) vs. frequency
for VGS = 0.7 V and VDS = 0 V of the 16 nm device.

Fig. 5.41. The maximum error, defined as

∆PC,C :=

∣∣∣∣
PC,C − 4kBT Re(YC,C)

PC,C

∣∣∣∣ ,

is about 0.3 % at low frequencies, which is a remarkably good agreement con-
sidering the difference in the computations of the PSD in Sect. 4.6 and the
small signal parameters in Sect. 3.6. Note that this level of accuracy in the
reproduction of the Nyquist theorem result is only possible due to the careful
considerations regarding the numerical restoration of reciprocity of Sect. 3.5.2,
the averaging scheme shown in Sect. 4.6.3, and the correct treatment of the GR
rate in the PSD as was discussed in Sect. 4.6.2. If one of these had not been
considered properly, the Nyquist theorem would have had an error at least an
order of magnitude larger. However, beyond a frequency of 10 THz the error in
the Nyquist theorem grows and reaches about 6 % at a frequency of 100 THz,
calling into question the reliability of our simulator at these frequencies and be-
yond. But as was already discussed in Sect. 5.3.2, these frequencies reach beyond
the physical phenomena included in our simulation approach and therefore we
cannot simulate these frequencies reasonably anyway.
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Figure 5.42: PSD of drain current fluctuations (black solid line; left axis)
vs. VGS for VDS = 0.7 V and f = 100 kHz of the 16 nm device together with
the equivalent shot noise 2qID (red dashed line; left axis) and the resulting
Fano factor F (blue dotted line; right axis).

5.4.3 Fano Factor

We want to take a look at the Fano factor which will be helpful in explaining
aspects of our devices’ excess noise. The Fano factor is the ratio of the drain
current noise and the noise if it were pure shot noise:

F :=
PDD

2qID
. (5.7)

Thus, a Fano factor F = 1 implies pure shot noise, while F < 1 implies that
the noise is smaller than pure shot noise – an effect that we will refer to as
suppression of noise.

In Fig. 5.42 we show the drain current noise PDD as well as the equivalent
shot noise 2qID vs. the gate bias. Note how they only deviate at gate biases
above the threshold voltage. The associated Fano factor F has been plotted
on the right axis of Fig. 5.42. At low gate biases it is close to unity with a
deviation of only about 2.5 %, which is an acceptable numerical error. Above
the threshold voltage the Fano factor shows the strong suppression of noise at
higher gate biases.

Figure 5.43 is the analogous plot for the 500 nm device. Here we see that
we obtain shot noise to within less than 1 % numerical error and at higher gate
biases the noise is suppressed as well. In fact, the suppression is even stronger
than in the 16 nm device. However, as we will find out later on, the type of
noise in these devices is not the same and therefore the reason for suppression is
different. In the 500 nm device we will find noise qualitatively similar to thermal
noise (cf. Sect. 5.4.6) while in the 16 nm matters are more complicated as will
be discussed in Sect. 5.4.7.
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Figure 5.43: PSD of drain current fluctuations (black solid line; left axis)
vs. VGS for VDS = 0.7 V and f = 100 kHz of the 500 nm device together with
the equivalent shot noise 2qID (red dashed line; left axis) and the resulting
Fano factor F (blue dotted line; right axis).

5.4.4 Excess Noise

We want to compare the excess noise of the 16 nm, 100 nm, and 500 nm devices.
To this end, we need to pick a frequency at which we can compare them where
they are all in the same mode of operation. For the present section and also
for the remainder of this work, we choose the frequency 100 kHz as a trade-
off between two competing bounds: First, we need it to be below the cutoff
frequencies of all three devices for all relevant operating points (cf. Fig. 5.36)
since it does not make sense to compare a small device below the cutoff frequency
with a large device above it. Second, we need the frequency to be high enough
to avoid impact of the low-frequency numerical errors (cf. Figs. 5.36, 5.27, 5.28)
in all quantities we are going to compute. Also note that the reason why we can
pick such a low frequency for comparisons is that our simulations do not contain
flicker noise.

The drain excess noise factor is given by [124]

γ =
PDD

4kBTgD0
, (5.8)

where gD0 is the drain self-admittance Y ′DD but at zero drain bias and zero
frequency, i.e.

gD0 = Y ′DD

∣∣∣∣
VDS= 0 V, f= 0 Hz

.

Note that the denominator is essentially the noise as given by the Nyquist the-
orem of Eq. (5.6) which is the PSD of thermal noise [108, 109]. Thus the drain
excess noise is the ratio of the actual drain noise to the thermal noise in equi-
librium and at zero frequency. In other words, it measures the deviation from
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the thermal noise floor. In practice, we do not need to evaluate gD0 exactly
at f = 0 Hz since it is constant in the low frequency domain (cf. Fig. 5.30),
therefore the exact frequency is irrelevant as long as it is low enough.

Figure 5.44 shows the drain excess noise factor against the drain bias for the
three devices at 100 kHz. Evidently, the drain excess noise seems to be strongly
affected by the discontinuities in the derivative w.r.t. the contact bias as was
already explained in Sect. 5.3.2. This is a numerical issue that we cannot avoid
when using the H-transformation but its impact is already greatly reduced by
reducing the spacing of the H-grid points.

The drain excess noise factor of the 16 nm device first appears to drop slightly
below 1 but then rises and saturates somewhere around γ = 1.15 when the drain
bias is increased. On the other hand, the drain excess noise of the 500 nm device
tapers off and approaches the drain excess noise of the long channel model based
on a charge sheet density approach of Ref. [125]. In between, for the 100 nm
device, we find that the drain excess noise initially drops as for the 500 nm device
but then starts to slowly increase with increasing drain bias. These results are
qualitatively in line with the findings of Ref. [126].

In Figure 5.44, we included the plot for the drain excess noise of the long
channel mode of van der Ziel found in Ref. [125]. Note that there is no particular
reason why our simulator should approach the long channel model of a bulk
MOSFET since we consider an actual double gate MOSFET and include many
effects ignored by van der Ziel’s oversimplified model. However, obtaining similar
results in the long channel limit for the drain excess noise indicates that the
drain excess noise is mostly only dependent on the channel length and not on
the particularities of the confinement.

The drain excess noise vs. the gate bias is shown in Fig. 5.45. For the 500 nm
device, the drain excess noise is about 1/2 in the sub-threshold and it rises to
about 2/3 above the threshold voltage, which is in accordance with the long
channel model of Ref. [125] (see also Ref. [127]). For the 100 nm device, we
find the same behavior in the sub-threshold but above the threshold voltage, γ
increases above the value of the long channel model as is already evident from
Fig. 5.44. In contrast, the 16 nm device looks strikingly different at lower gate
biases where its value is significantly larger than for the larger devices. This
behavior can be explained with DIBL which is present in the 16 nm device but
not in the devices with longer channels (cf. Figs. 5.12 and 5.14). The effect of
DIBL is that it increases the current and thus the noise in the numerator of
the drain excess noise factor of Eq. 5.8 while gD0 in the denominator remains
unaffected by DIBL since it is evaluated at zero drain bias. The enhancement
of γ is particularly prominent in the sub-threshold since – as shown in Fig. 5.42
– the device is generating pure shot noise which is directly proportional to the
current. For higher gate biases, the noise is suppressed and therefore generated
by another mechanism than shot noise – as we will see in Sect. 5.4.7. Thus the
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Figure 5.45: Drain excess noise factor γ
vs. gate bias VGS at VDS = 0.7V and f =
100 kHz for the 16 nm (black solid), 100 nm
(blue dashed), 500 nm (red dotted) devices.

drain excess noise factor becomes smaller above the threshold voltage. However,
even above the threshold voltage, the drain excess noise comprises DIBL but it
is counteracted by the suppression.

This calls into question the utility of the drain excess noise in small devices
with DIBL since it directly enhances γ. A comparison of γ using devices of
different channel lengths amounts in part to a comparison of DIBL of the de-
vices rather than a comparison of only their noise. In these cases a reasonable
approach would be the inspection of quantities like the Fano factor of Eq. (5.7)
where both the numerator and denominator are evaluated at the same drain
voltage and therefore the enhancement due to DIBL is cancelled. Nevertheless,
since γ is often reported by experiments, it is useful to calculate anyway. The
finding that the drain excess noise rises for short channel devices and the increase
due to DIBL in the sub-threshold is corroborated by Ref. [128] which uses the
drift-diffusion and hydrodynamic models.

The gate excess noise is usually defined as [125]

β =
PGG

4
5kBT

(ωCGS,sat)2

gD0

, (5.9)

where CGS,sat is the gate-source capacitance in saturation. The gate excess
noise has a similar interpretation as the drain excess noise. If we assume a
simple charge sheet model of a MOSFET as in Ref. [125], we find for the PSD
of the gate terminal current in saturation:

P ziel
GG

∣∣∣
VDS>VGS−Vth

=
16

15
kBT

(ωCGS,sat)
2

gD0
. (5.10)
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In the charge sheet model, we find that the drain self-admittance is the same in
equilibrium and in saturation:

gD0 = gD,sat := Y ′DD

∣∣∣∣
VDS>VGS−Vth

. (5.11)

It follows that β = 4
3 in saturation if a device’s gate noise is accurately described

by the simple charge sheet model [129, 130]. Conversely, the charge sheet model
yields in equilibrium

P ziel
GG

∣∣∣
VDS=0

=
3

4
kBT

(ωCGS,sat)
2

gD0
, (5.12)

leading to a gate excess noise of β = 15
16 .

Figure 5.46 shows the gate excess noise vs. the drain bias of the three devices
for VGS = 0.7 V and f = 100 kHz, where the gate-source capacitance has been
approximated using the equivalent circuit representation of Eq. (5.4) as

ωCGS,sat ≈ Im(YGG + YGD)
∣∣∣
VDS=0.7V

,

which is valid in the low-frequency regime, i.e. as long as YGG and YGD are linear
in the frequency.

Figure 5.46 shows the gate excess noise vs. the drain bias. Before we begin
the discussion, let us once again note that the gate excess noise is affected
by the discontinuities introduced through the H-transformation as discussed
in Sect. 5.3.2. From Fig. 5.46 it becomes apparent that not even the 500 nm
device behaves according to the charge sheet model of Ref. [125] predicting
values of the gate excess noise in equilibrium and in saturation. But this is not
entirely unexpected since the present description of our nMOSFETs involves a
very thin channel where the gate noise is mediated through a response of the
SE to potential fluctuations. Therefore it stands to reason that the gate noise
cannot be plausibly described by Eqs. (5.10) and (5.12). Indeed, we can easily
show that the underlying assumptions of the charge sheet model are severely
violated in our transport model by showing that Eq. (5.11) does not hold. To
this end, we show the drain self-admittance vs. the drain bias for VGS = 0.7 V
and f = 1 kHz in Fig. 5.47. Keep in mind that Im(Y ′DD) � Re(Y ′DD) at low
frequencies (cf. Fig. 5.30 and Eq. (5.4)) and therefore Y ′DD can be approximated
to leading order as purely real. As is evident, for none of the devices, not even
for the 500 nm device, does Eq. (5.11) actually hold.

We can conclude that the gate excess noise β does not adhere to its usual
interpretation where it can be seen as the deviation from the thermal noise
floor. Nevertheless, the gate excess noise is a quantity often quoted as a device
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characteristic and therefore computing it has value for direct comparisons with
experiments although its interpretation is not straightforwardly conclusive.

In this spirit, we observe that the gate excess noise shown in Fig. 5.46 is
strictly larger for shorter channels, which by itself is difficult to interpret due to
the denominator of β in Eq. (5.9) being different for each device. What can be
said, though, is that the smaller the device, the higher β will rise in saturation
compared to its equilibrium value. Since the denominator of β is independent
of the drain bias, this is a direct consequence of a differing behavior of PGG in
the three devices indicating a different quality of noise in the devices.

Figure 5.48 shows the gate excess noise factor against the gate bias on both
a linear and a logarithmic scale where it becomes apparent that the gate excess
noise for the short channel device is not strictly larger than in the long channel
device. Indeed, around the threshold voltage, we can observe how the gate excess
noise for the 500 nm device exceeds even the 16 nm device. The results for the
gate excess noise shown here are in qualitative agreement with Ref. [128].2

5.4.5 Cross Correlation

The correlation coefficient of noise is another defining quantity for the noise in
a MOSFET. It is defined as [125]

c =
PGD√
PGGPDD

.

2Note that the gate excess noise in Ref. [128] is evaluated with the gate-source capacitance
CGS at the actual bias point and not in saturation. This changes the absolute values of β below
saturation somewhat but not as significantly as to change the qualitative appearance.
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As is explained in Ref. [131], the real part of the correlation coefficient in a
MOSFET at low frequencies is usually negligible compared to the imaginary part
and therefore it can be ignored for most practical purposes. We can corroborate
this by explicitly calculating the real and imaginary parts of the correlation
coefficient depicted in Fig. 5.49 for the 16 nm device and in Fig. 5.50 for the
500 nm device. Note how the real part is approximately zero everywhere. The
imaginary part of the correlation coefficient of the 16 nm device in Fig. 5.49 rises
up until the threshold voltage, where it reaches its maximum, and then tapers
off towards higher gate biases. The same trend shows for the 500 nm device
plotted in Fig. 5.50, however, for this device the peak is much wider and at high
gate biases the correlation coefficient does not decrease as significantly as for
the 16 nm device.

The value obtained from the charge sheet model of Ref. [125] is given by
Im(c) = 0.395 but we cannot observe it in our simulations. However, similar to
the gate excess noise, the approximations of the charge sheet model of Ref. [125]
are nowhere near of being capable of capturing the electron confinement of the
simulated double gate MOSFET and thus any correlations mediated by the
confined electron gas from gate to drain would be difficult to capture without
self-consistent solutions such as the ones of this work.

The correlation coefficient expresses the correlation between the fluctuations
in the gate and drain contacts as shown in Eq. (4.2). If a fluctuation occurs
within the device due to a scattering event, we expect that the fluctuation will
show itself in the terminal currents. If it shows in both the gate and drain
terminal currents, the noise is correlated and we obtain a non-zero correlation
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coefficient as is obvious from Eq. (4.1). To better understand the reason why
the correlation coefficient has a maximum around the threshold voltage, we can
inspect the origin of the correlation coefficient within the device by plotting the
contribution to the correlation coefficient per grid point in transport direction.
Figure 5.51 shows the origin of the correlation coefficient for the 16 nm device
using the spatial density of the PSD as defined by Eq. (4.43). Thus, if the plot
is non-zero at some spatial location, it means that a fluctuation occurring at
this position will elicit a correlated response in both the gate and drain terminal
currents. In the sub-threshold at VGS = 0.2 V – at voltages lower than the
peak of c in Fig. 5.49 – the fluctuations which generate a correlated terminal
current response mainly occur on the source side in front of the channel region.
As the gate voltages increases up to the threshold voltage, the current flowing
through the device increases as well which increases the amount of fluctuations.
The noise at the threshold voltage and in the sub-threshold is qualitatively the
same, as in both cases it is generated on the source side like shot noise, only their
absolute values are different since the stationary current is different. However,
when the gate voltage is turned up beyond the threshold voltage, we can see
that the quality of the noise changes. Fluctuations on the source side have less
impact and the channel noise starts to contribute to the correlation coefficient.
Moreover, on the drain side, we see that fluctuations cause a negative correlation
coefficient.

Therefore the reason for the low correlation at low gate biases is due to
the small effect of fluctuations. However, at high gate biases the terminal cur-
rents become uncorrelated not due to the weak effect of fluctuations on the
terminal currents but because the fluctuations on the drain side counteract the
fluctuations on the source side. This cancellation was previously noted with a
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drift-diffusion and a hydrodynamic model in Ref. [132].

Figure 5.52 shows a similar plot for the 500 nm device but we chose the
gate bias in the sub-threshold region to be VGS = 0.05 V in order to be at a
voltage lower than the maximum in c shown in Fig. 5.50. Here, we find a similar
behavior but the correlated noise in the sub-threshold is generated within the
channel on the source side rather than in the contact region. Once the gate bias
is turned up, we can see that the channel region close to the drain counteracts
the correlation on the source side and therefore the overall cross correlation
decreases.

5.4.6 Origin of Noise

The deterministic solver allows us to directly compute the origin of noise as has
already been done for the correlation coefficient in Figs. 5.51 and 5.52. The
various definitions of densities of the PSD are given in the end of Sect. 4.6.3
by Eqs. (4.43), (4.44), and (4.45). Figure 5.53 shows the noise contributions
to the drain terminal current throughout the 500 nm device in the on-state. It
is evident that most of the noise is generated throughout the channel. As was
shown in Sect. 5.2.2, the 500 nm device exhibits scattering dominated transport,
i.e. a lot of scattering events occur in the channel when electrons cascade down
the potential created by the subband energies from source to drain, making the
distribution of carriers appear thermal (cf. Fig. 5.8). And since scattering events
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tions per grid point in transport direction of
the 16 nm device at VGS = VDS = 0.7 V and
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are fluctuations we find that most of the noise is generated within the channel.
Thus, the noise in the long channel device behaves similar to thermal noise
although its magnitude is significantly larger than the Johnson-Nyquist noise of
Eq. (4.4) and it is skewed somewhat towards the source side. We also observe
a high contribution from the highly doped contact region but it is negligible
compared to the integral over the noise of the channel region.

Compare this to the origin of noise in the 16 nm device shown in Fig. 5.54
in the on-state. We may note that the GR rate contributes noise on the source
and drain contacts at y = ±16 nm which is dependent on the size of the re-
combination velocity in Eq. (5.2). Moreover, the highly doped contact regions
contribute a significant part of noise and we see discontinuities when the de-
formation potential is adjusted due to the abruptly changing doping density at
y = −12 nm,−8 nm, 8 nm, 12 nm (cf. Fig. 5.2). As was explained in Sect. 5.1.1,
we adjust the deformation potential of the elastic acoustic phonon scattering in
order to mimic impurity scattering in the highly doped contact regions. Most
of the noise in the 16 nm device stems from the channel region where we find
a maximum in noise generation a few nanometers past the maximum in the
energy barrier formed by the subband. It is clear that the noise in the channel
is highly inhomogeneous and therefore it stands to reason that there is a more
complicated underlying process at play that leads to this appearance.

In order to gain more insight into how noise emerges in the devices, we can
plot the PSD not only as a spatial density but also as a density w.r.t. H-space
as defined in Eq. 4.44. The resulting noise density of the drain current noise
for the 500 nm device is shown in Fig. 5.55. The white region in this plot is
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kinematically inaccessible since it is below the lowest subband energy. Note how
most of the noise is generated in the channel region just above the energetically
lowest subband energy. Compare this to the plot of the current density in
Fig. 5.16 which shows that the current flows in the same region. The obvious
conclusion is that the fluctuations in the PSD of the terminal current can only
originate where the current flows within the device. To be sure, an energy region
that does not contribute to the drain terminal current can fluctuate equally well
but it cannot influence the drain terminal current. Since the transport in the
500 nm device is scattering dominated, a lot of scattering events occur in the
channel, leading to the accumulation of carriers near the lowest subband energy.
These scattering events in the channel are fluctuations and thus they manifest
in the PSD of the drain terminal current.

A careful inspection of Fig. 5.55 reveals that there appear to be multiple
levels parallel to the lowest subband energy at which the PSD contribution
increases stepwise. These levels correspond to the various subbands in the device.
As soon as an additional subband is energetically available, scattering processes
to and from it suddenly become possible and the contribution of these additional
scattering processes is immediately noticeable in the PSD.
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Let us now turn to where the noise originates in the 16 nm device. Recall
that the current density was a horizontal band above the maximum of the ener-
getically lowest subband as was shown in Fig. 5.17. Any fluctuation perceivably
impacting the drain terminal current must occur within that horizontal band to
be effective. However, compared to the 500 nm device, we see that in Fig. 5.56
fluctuations in the channel have a peculiar way of contributing to the drain ter-
minal current. The maximum in the PSD per spatial and energy grid point is
located in the channel and shaped like the subband energy but strangely it is
shifted to higher energies, away from the minimum subband energy. To be sure,
the PSD does not look like shot noise which is generated before the potential
energy maximum that carriers must surpass. From Fig. 5.42 we already know
that in the sub-threshold, we find pure shot noise. Hence, we may conclude that
whatever is suppressing the noise when the gate bias is high, is responsible for
the appearance of the PSD in Fig. 5.56. In the next section, we will comprehen-
sively investigate the suppression of noise and determine the nature of noise in
the 16 nm device.

5.4.7 Suppression of Noise

In light of the appearance of the noise in the 16 nm device shown in Figs. 5.54
and 5.56 as well as the Fano factor of Fig. 5.42, it stands to reason that the
noise in the short channel device cannot be characterized by either shot noise or
something with the qualitative appearance of thermal noise. As the Fano factor
in Fig. 5.42 shows, the noise at lower gate voltages is pure shot noise, while
at higher gate voltages it becomes suppressed. In this section, we will come to
understand the dominant mechanism of noise generation in the short channel
device leading to this suppression.

The suppression of noise has been reported in literature to have at least
two origins which we will investigate. The first reason for suppressed noise
is the Pauli principle (see e.g. Ref. [51]). Shot noise is the noise originating
from carriers surpassing a potential barrier. If the rate of transfer over the
barrier is known – e.g. in terms of the current –, we can directly relate it to
the PSD. However, such a simple relation between noise and current can only
be derived if the Pauli principle is ignored. Once we incorporate it, scattering
events terminating in already occupied states are forbidden and thus the total
scattering rate is reduced. Since scattering events are noise, we can conclude
that in a system where the predominant noise source is from carriers overcoming
a potential barrier and where the Pauli principle is important, we will find a PSD
smaller than for pure shot noise.

The second reason for the suppression of noise is due to Coulomb interactions
which was already reported in Refs. [133, 134] in the context of MOSFETs. The
idea is that a local accumulation of carriers increases the energy necessary to
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F Pauli no Pauli

Coulomb 0.42 0.41

no Coulomb 0.71 1.01

Table 5.2: Fano factor F of the 16 nm device at VGS = 0.7 V, VDS = 0.7 V,
and f = 100 kHz with and without noise suppressing mechanisms.

add further carriers while a depletion increases the energy to remove further
carriers. Then a scattering event not only modifies the distribution functions
of each subband but also the respective electric potentials the carriers will be
subject to. Completely homogeneous carrier distributions do not exhibit this
phenomenon but since our device has a strong spatial dependence on the density,
we expect to find some suppression.

Note that the term Coulomb interactions in this context does not mean
Coulomb scattering but the interactions of carriers through the electric potential
computed via the PE. The way we compute the noise via the self-consistent
system of PE, SE, and BE, we include how a fluctuation in the distribution
function influences the electric potential and hence the subband energies and
wave functions which in turn have an impact on the distribution functions. As
long as this feedback loop is contained in a simulation, Coulomb interactions in
the above sense are included.

We can make sure that there are no other mechanisms suppressing the noise
by turning both the Pauli principle and the Coulomb interactions off. The Pauli
principle can be omitted by ignoring the final state distribution functions in
Eq. (2.15), i.e. using Eq. (2.16) as our scattering rate in the BE and LBE. The
Coulomb interactions disappear once we ignore the self-consistency of the prob-
lem and solve the Green’s function equation only for the LBE. In practice this
can be achieved by setting the off-diagonal blocks of Eq. (4.16) to zero, i.e. re-
move the derivatives of the LBE w.r.t. the potential and remove the derivatives
of the PE w.r.t. the distribution functions in Eqs. (4.13) and (4.14).

Table 5.2 shows the Fano factor if either or both of the suppressing mech-
anisms are turned off. Evidently both mechanisms impact the Fano factor but
only when both are turned off do we obtain pure shot noise.3 Thus we can
conclude that there are no other mechanisms suppressing the noise.

Pauli Principle

The Pauli principle is quite important in the 16 nm device as can already be seen
from the distribution function in Fig. 5.10. Moreover, turning off the Pauli prin-
ciple changes the mean energy significantly as was shown in Fig. 5.22. The Pauli

3Note that the 1% deviation of the Fano factor from unity is within our margin of error,
see Sect. 5.4.3.
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Figure 5.57: Occupation of valleys in the channel region at the position of
maximum average velocity of the 16 nm device (cf. Fig. 5.21) for VGS =
VDS = 0.7 V. The x-, y-, and z-valleys refer to the valleys aligned with the
respective axis in k-space. Confinement is in x-direction and transport is in
y-direction.

principle is also responsible for a substantial redistribution of carriers among the
valleys in the band structure of silicon. Figure 5.57 shows the valley occupation
in the channel of the 16 nm device with and without the Pauli principle in the
on-state. Here, x-, y-, and z-valleys refer to the valleys aligned with the re-
spective axis in k-space (see Fig. 2.6). Recall that transport from the source to
the drain contact happens in y-direction and the confinement is in x-direction
(cf. Fig. 5.1). Thus, the x-valleys have a larger mass in confinement direction
and therefore their subband energies are energetically lower, from which imme-
diately follows that they hold the most carriers. Note how the Pauli principle
prohibits about 12% of the total number of carriers to reside in the x-valleys
and redistributes them to the energetically higher y- and z-valleys.

Another curiosity relating to the valley occupation is that the y-valleys con-
tain more electrons than the z-valleys because the driving electric field is applied
in y-direction. Since the y- and z-valleys are energetically equivalent, the only
remaining difference is the mass of carriers in transport direction which is larger
for y-valleys than for z-valleys (cf. Fig. 2.6). Thus, electrons in y-valleys are
more inert when an electric field is applied in transport direction while electrons
in z-valleys accelerate quicker and can therefore be scattered more readily. This
creates an imbalance in scattering rates between the valleys which leads to an
imbalance in the occupation.

Despite its impact on the electron configuration, the Pauli principle is not
responsible for the surprising appearance of the PSD of the drain current fluc-
tuations of Fig. 5.56. Turning off the Pauli principle does in fact not change the
qualitative appearance of Fig. 5.56. Hence, the unexpected shape of the PSD
must originate in the suppression due to the Coulomb interaction.

Coulomb Interaction

To understand the appearance of the PSD of the drain current of Fig. 5.56, let us
inspect the PSD per subband KνDD(y,H) of Eq. (4.45). Figure 5.58 depicts the
PSD vs. y- andH-space of the 500 nm device for the lowest subband of each of the
three distinguishable valleys. The lowest subband of each valley is representative
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of the total noise generated in that valley since higher subbands contribute
exponentially less. Note how practically all the noise is generated in the x-
valleys. These are energetically lower than the other valleys and therefore they
contain more electrons and carry the largest portion of the current. Thus, the
intuitive and straightforward conclusion applies to the 500 nm device: We will
find more scattering events in the x-valleys and thus more fluctuations impacting
the terminal current and therefore the x-valleys contribute stronger to the PSD.
Furthermore, if you look carefully, you can see that the z-valleys contribute more
noise than the y-valleys. This is due to the aforementioned lighter mass of the z-
valleys in y-direction. Carriers in the z-valleys are accelerated more quickly and
therefore they scatter more readily, leading to the imbalance in valley occupation
shown in Fig. 5.57, but also leading to more noise generation in the z-valleys.

If we plot the PSD per valley for the 16 nm device, we find the surprising
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appearance of Fig. 5.59. The strongest contributions to the PSD stem from the
region around the maximum of the subband energy in the y-valleys. The strong
contributions from the y-valley are directly responsible for the appearance of
Fig. 5.56. To be sure, it is still true that the x-valleys contain significantly more
electrons than the y- or z-valleys (cf. Fig. 5.57) and it is also still true that the
x-valleys carry significantly more current. In fact, in the channel only about
5 % of the total current is transported through the y-valleys while about 77 % is
carried in the x-valleys. Thus, despite having more scattering events happen in
the x-valleys, we see that they are not the predominant source of fluctuations
in the drain terminal current of the 16 nm.

To make sure we are on the right track in investigating the origin of this
behavior, we plot the PSD for the lowest subband of each valley when we turn
off the Coulomb interactions. The resulting PSD is plotted in Fig. 5.60 and
as is obvious, the origin of noise changes completely. Without the Coulomb
interaction, we find that the x-valley contributes most of the noise to the drain
terminal current, just as would have been expected from a long channel device.
Indeed, the qualitative appearance of Fig. 5.56 without Coulomb interaction
would change to something one could extrapolate from the long channel case.
The reason why the z-valleys contribute more to the noise than the y-valleys is
once again due to the differing masses in transport direction which also lead to
the imbalance in the occupation shown in Fig. 5.57.

However, Coulomb interactions do exist and as we can see, their impact
is significant, changing not only the absolute values of the noise but also the
origin and thus the quality and interpretation of noise in a nanoscale device.
Thus, the above interpretation for the origin of noise in the case of no Coulomb
interactions does not apply once we include how fluctuations in the density
perturb the electric potential.

To see how exactly the fluctuations in the 16 nm device elicit a drain current
response, we plot the Green’s function of the drain terminal current vs. y- and
H-space shown in Fig. 5.61. Recall that the Green’s function of the terminal
current introduced in Eq. (4.20) is the response of the terminal current to a fluc-
tuation in the distribution function in some subband at some position, energy,
and with a certain Fourier harmonic. Thus, since the zeroth harmonic of the
distribution function constitutes the electron density (see Eq. 5.3), the Green’s
function of the drain terminal current of the zeroth harmonic tells us what hap-
pens to the drain terminal current when we put a charge into some subband
at some position and energy. However, keep in mind that while this is a valid
interpretation of the Green’s function, all our scattering processes are actually
charge conserving which can be seen by the pairwise appearance of creation and
annihilation Green’s functions in the PSD of Eq. (4.34), i.e. a scattering process
is tantamount to an annihilation of charge in the initial state and a creation of
charge in the final state.
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Figure 5.61 shows that if a charge is placed in an x-valley in the region
around a – close to the drain and at energies below the subband maximum –,
the Green’s function of the drain terminal current is ‘1’. This implies that the
charge is completely converted into a current measurable in the drain terminal.
The same argument holds for fluctuations, i.e. a fluctuation occurring at position
a would be measurable as a fluctuation in the drain terminal current.

On the other hand, the Green’s function is close to zero on the source side
in the region around b – at energies lower than the subband maximum. This is
because a charge placed there is unlikely to scatter to higher energies in order to
surpass the energy barrier to reach the drain contact. It is far more likely that
the charge moves directly towards the source contact or that it is reflected at the
energy barrier and then returns to the source contact. Thus, any fluctuations
occurring around b has no impact on the drain current.
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The most interesting feature of Fig. 5.61 is the negative area around c,
which is right next to the subband energy maximum of the y-valley. Here, the
negative values imply that placing a charge in that region reduces the drain
terminal current. Moreover, the Green’s function reaches values of less than
−1.2 which means that the reduction of the terminal current is more effective
than the increase this charge could elicit if it were placed directly on the drain
contact. Since we already know that the noise in this device is strongly affected
by the Coulomb interaction and we just learnt that it must be an indirect effect
due to the effectiveness of a single charge in reducing rather than increasing the
drain current, it stands to reason that fluctuations strongly affect the electric
potential and thus the subband energies.

Recall that the current in the 16 nm device flows as in Fig. 5.17 as a horizontal
band just above the subband energy barrier. Then, an increase in the maximum
of the subband energy directly impacts the flow of electrons from source to drain.
A charge placed somewhere around the maximum of the subband energy in the y-
valley increases the subband energy and therefore decreases the drain current by
reflecting back a larger portion of the electrons coming from the source contact.
This explains both why a charge decreases the total drain current and why the
charge is so effective in the reduction of the drain current.

What remains is the explanation of why the y-valley and z-valley do not
contribute equally, i.e. why a charge placed into the z-valleys does not lead
to such a reduction in the drain current as a charge placed into the y-valleys.
The only difference between these valleys are the effective electron masses in
transport direction. Since the mass in transport direction of electrons in the
y-valleys is significantly larger than the one in the z-valleys, the electrons are
more inert and therefore an electron in the y-valley can affect the subband energy
more effectively while an electron in the z-valley is more ephemeral in that it is
easily pushed to the drain contact by the driving field.

To summarize, we have shown that in a short-channel device with ballistic
transport, the predominant effect of noise generation comes from the impact
of fluctuations on the energy barrier carriers must surpass. This effect is only
included if simulations are self-consistent. Omitting self-consistency and thus
the Coulomb interactions, not only leads to different absolute values of noise
but also misrepresents the way noise is generated within the device.
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Chapter 6

Conclusion

We built upon the existing work on deterministic solvers using spherical or
Fourier harmonics expansions of k-space and proceeded to construct the full
Newton-Raphson approach for the stationary system of Poisson equation (PE),
Schrödinger equation (SE), and Boltzmann equation (BE) in Chap. 2 of this
work. We set up the small signal system of equations in what followed in Chap. 3
and we identified difficulties in the definition of the time-derivative as well as
in the discretization. Through careful analysis, we found a way to mitigate
these issues such that our final system of equations for the small signal analysis
conserves essential symmetries of real devices. Furthermore, we derived a useful
form of the Ramo-Shockley theorem for confined electron gases which is also
applicable to related cases. We continued to derive the equations to compute
the self-consistent noise with the Langevin-source approach in Chap. 4. We also
derived general equations to treat degeneracy in the Green’s function equations
and in the power spectral densities of noise.

The aforementioned theoretical work has lead to the first ever fully self-
consistent and deterministic solver for small signal and noise analyses for the
system of PE, SE, and BE in a nanoscale nMOSFET. In Chap. 5, we demon-
strated our implementation of the solver and showed that it can produce results
with unprecedented precision in a wide range of operating conditions and fre-
quencies. In particular, due to the deterministic nature of the solver, we find that
we can determine solutions in the low frequency domain and in the sub-threshold
where traditional Monte Carlo (MC) based solvers are computationally infea-
sible. We showed that we can compute all relevant figures of merit concerning
the small signal and noise behavior in the linear response regime of a nanoscale
nMOSFET. We also showed that our simulations are consistent with literature
wherever similar findings were available.

The absolute advantage of deterministic solvers over MC approaches is that
it is possible to understand the inner workings of the device which we exploited
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to find out where noise in a nanoscale nMOSFET originates. By using this
property of our deterministic solver, we found that in devices where transport
is essentially ballistic, noise in the drain current is predominantly generated by
Coulomb interactions which influence the potential barrier the drain current
needs to surpass. This means that the self-consistenty of the PE, SE, and BE is
vital during the determination of noise.

The work compiled in this manuscript is the product of a multi-year effort
which yielded several publications. In Ref. [63], the full Newton-Raphson ap-
proach for the stationary solution of the self-consistent system of PE, SE, and
BE is presented. In Ref. [58] the theoretical ground work for the self-consistent
small signal and noise problems is elaborated. Finally, in Refs. [64] and [135]
the results for a nanoscale nMOSFET are shown.

The implementation as well as the underlying ideas of the simulator used in
this work have already been used in related research. References [117] and [136]
use the self-consistent solver for an investigation of GaAs and graphene devices,
respectively. Moreover, Ref. [137] uses parts of the code for an investigation of
plasma waves. A self-consistent simulation of a silicon nanowire based on the
same principles can be found in Ref. [41].

For future work, there are still some low-hanging fruits which include the
noise calculation with different crystal orientations, non-parabolic band struc-
tures, and the inclusion of impurity scattering and screening. The simulator
developed during this work would also need experimental validation which in-
volves a non-trivial amount of fitting of device dimensions and material prop-
erties. Future work could also incorporate devices with different semiconductor
materials or devices with altogether different shapes or even the full inclusion of
holes. Furthermore, the current work could inform and improve the workings of
compact models for noise.



Appendix A

Observables

In the following, we want to provide a list of all important quantities and their
respective definitions.

A.1 Stationary

Density

The electron sheet density in transport direction per subband and per spin is
defined as

nν(y) =

∫
d2k

(2π)2
fν(y,k) =

1

Y0
Zv
∫
dH fν0 (y,H). (A.1)

The total sheet density is given by

n(y) = µspinµval

∑

ν

nν(y). (A.2)

The 3D density per subband and spin reads

nν3D(r) = nν(y)|Ψν(r)|2 (A.3)

and its total is

n3D(r) = µspinµval

∑

ν

nν3D(r), (A.4)

with r =
(
x y

)t
.

The discretization of the sheet density is given by

nν(yi) =
1

Y0
Zv
∑

j

fν0 (yi, Hj)∆H
ν(yi, Hj) (A.5)

and the discretized 3D density is

nν3D(xk, yi) = nν(yi)|Ψν(xk, yi)|2
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Current Density

The electron sheet current density in transport direction per subband and per
spin is given by

jν(y) = (T vHV)yy

∫
d2k

(2π)2
vvy(k)fν(y,k)

= (T vHV)yy

∫
dH Zv (vvy)1(y,H) fν1 (y,H). (A.6)

Note that k-space is Herring-Vogt transformed and therefore the y-component
of the group velocity needs to be transformed (cf. Eq. (2.50)). Here, (vvy)1(y,H)
denotes the Fourier coefficient of the first harmonic (cf. Eq. (2.61)). The 3D
current density in transport direction per subband and spin is given by

Jνy(r) = jν(y)|Ψν(r)|2ey. (A.7)

Hence, the total electron sheet current density reads

j(y) = µspinµval

∑

ν

jν(y) (A.8)

and likewise for the 3D current density

Jy(r) = µspinµval

∑

ν

Jνy(r).

Discretization is a bit more involved since we have to be careful with the inte-
gration of the group velocity in H-space. We use the same analytical integration
as in the free streaming term, which is given by Eq. (2.78). Hence, we find for
the sheet current density

jν(yi+) = (T vHV)yyZ
v
∑

j

fν1 (yi+, Hj)

∫

∆Hν(yi+,Hj)
dH (vνy )1(yi+, H) (A.9)

and for the 3D current density in transport direction

Jνy(xk, yi+) = jν(yi+)
|Ψν(xk, yi+1)|2 + |Ψν(xk, yi)|2

2
,

where the wave function needs to be averaged since it is defined on the direct
grid points.
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Terminal Current

The terminal current is defined as the charge current flowing into the device.
Therefore we find that the drain terminal current per length in the homogeneous
z-direction in the stationary case is simply given by

I ′D = qj(y).

There is no need for the Ramo-Shockley theorem in the stationary case since
the current is constant anyway (cf. the continuity equation (3.23)).

Distribution Function

In order to visualize the distribution function, we need to sum over all Fourier
components and invert the H-transformation as

fν(y,k(E, φ)) =
∑

m

fνm(y,H − εν(y))Ym(φ).

Note that this is the distribution function per subband.

Effective Field

The effective field in confinement direction is defined in our case as

Eeff =
q

κSi

(
1

2
n+ wSiND

)
, (A.10)

where κSi is the permittivity of silicon, wSi is the width of the silicon channel,
and ND is the donor density. Note that there exists a relation between the
average electric field in confinement direction and the above expression but it
only applies to special cases [69].

Low-Field Mobility

The low-field mobility is given by

µe =
j

qnEel
,

where Eel is the driving electric field. This expression only makes sense when
diffusion can be neglected, i.e. in homogeneous devices without built-in fields.

Velocity

The average electron velocity is given by

v(y) =
j(y)

n(y)
.
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Mean Energy

The average energy of electrons as measured relative to the energetically lowest
subband ενmin is given by

〈E〉(y) =
µspin µval

∑
ν

∫
d2k

(2π)2 [Ev(k) + εν(y)− ενmin(y)] fν(y,k)

µspin µval
∑

ν

∫
d2k

(2π)2 fν(y,k)

=
µspin µval

Y0 n(y)

∑

ν

Zv
∫
dH [H − ενmin(y)] fν0 (y,H).

The discretization is given by

〈E〉(yi) =
µspin µval

Y0 n(yi)

∑

ν

Zv
∑

j

[
1

2
(Hj+ − ενmin(yi))

2 − 1

2
(Hj− − ενmin(yi))

2

]

(A.11)

× fν0 (yi, Hj). (A.12)

A.2 Small Signal

Density

The straightforward linearization of the sheet density in Eq. (A.1) yields

nν(y) =

∫
d2k

(2π)2
fν(y,k) (A.13)

=
Zv

Y0

∫ ∞

εν(y)
dH fν

0
(y,H)− Zv

Y0
fν0 (y, εν(y)) εν(y). (A.14)

Note the additional contribution of the small signal subband energy due to the
H-transformation. In the continuum the sheet density can also be expressed as

nν(y) =
Zv

Y0

∫ ∞

εν(y)
dH

[
fν

0
(y,H) +

∂fν0 (y,H)

∂H
εν(y)

]
. (A.15)

The 3D density of Eq. (A.3) can also be linearized as

nν3D(r) = nν(y)|Ψν(r)|2 + 2nν(y)Ψν(r)Ψν(r), (A.16)

where it was assumed that the stationary wave function Ψ is real. The total
densities can be obtained by a sum over all subbands and by multiplying with
the valley and spin multiplicities.

Eqs. (A.13) and (A.15) are not the same in discretized H-space and for the
reasons discussed in Sect. 3.5, we use the expression of Eq. (A.15) in the small
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signal density of the PE. Therefore the small signal density as seen from the
perspective of the small signal BE and PE is given by

nν(yi) =
Zv

Y0

∑

j

[
∆Hν(yi, Hj)f

ν
0
(yi, Hj)

+

∫

∆Hν(yi,Hj)
dH

∂fν0 (yi, H)

∂H
εν(yi)

]
.

with the integral over the H-derivative given by Eq. (3.58).

Current Density

The small signal current density is the linearization of Eq. (A.6) and therefore
it reads

jν(y) = (T vHV)yy

∫
d2k

(2π)2
vvy(k)fν(y,k)

= (T vHV)yyZ
v

[ ∫
dH (vvy)1(y,H) fν

1
(y,H) +

∫
dH (vvy)1(y,H) fν1 (y,H)

− (vvy)1(y, εν(y))fν1 (y, εν(y)) εν(y)

]
, (A.17)

where the first Fourier harmonic of the small signal group velocity is given by

(vvy)1(y,H) =
∂(vvy)1(y,H)

∂εν(y)
εν(y) = −1

2

√
2π

mv
d(H − εν(y))

εν(y).

Then, the 3D current density can be obtained by linearization of Eq. (A.7) as

Jνy(r) = jν(y)|Ψν(r)|2ey + 2jν(y)Ψν(r)Ψν(r)ey,

where it is assumed that the stationary wave function is real. The total current
densities can be found by summing over all subbands and multiplying by valley
and spin multiplicities. The discretization reads

jν(yi+) = (T vHV)yyZ
v

[∑

j

fν
1
(yi+, Hj)

∫

∆Hν(yi+,Hj)
dH (vvy)1(yi+, H)

+
∑

j

fν1 (yi+, Hj)

∫

∆Hν(yi+,Hj)
dH (vvy)1(yi+, H)

− fν1 (yi, Hjmin)εν(yi+)
∂

∂εν(yi+)

∫

∆Hν(yi+,Hjmin
)
dH(vvy)1(yi+, H)

]
,



206 APPENDIX A. OBSERVABLES

where all integrals need to be evaluated analytically as shown in Eq. (2.78) and
jmin is the index of the lowest non-zero H-box. Note that the term proportional
to the small signal subband energy needs to be evaluated in such a way that it
is consistent with integral of the group velocity over the lowest box.

Terminal Current

In Sect. 3.4, the small signal terminal current has been computed via the Ramo-
Shockley theorem. The resulting discretized terminal current at contact C per
length in z-direction is given by

I ′C = qµspin µval

∑

k,i,ν

∆xk ∆yi hC(xk, yi)

×
[(

jν(yi+)− jν(yi−)

∆yi
− Sν(yi)

)
|Ψν(xk, yi)|2

− 2iωnν(yi)Ψ
ν(xk, yi)Ψ

ν(xk, yi)

]
− iω

∑

C′
C′C,C′V C′

appl.

Admittance Parameters

Admittance parameters are given by

Y ′C,C′ =
∂I ′C
∂V C′

appl

=
I ′C
V C′

appl

, with V C′′
appl = 0, C ′′ 6= C ′,

where V C′
appl is the small signal bias applied to the contact C ′.

Hybrid Parameters

For a set of admittance parameters Y ′GG, Y ′GD, Y ′DG and Y ′DD in common-source
configuration (see Sect. 3.6.3), the hybrid parameters are defined as

H ′GG =
1

Y ′GG

, H ′GD = −Y
′

GD

Y ′GG

,

H ′DG =
Y ′DG

Y ′GG

, H ′DD =
det(Y ′)
Y ′GG

.

Cutoff Frequency

The cutoff frequency is defined as the frequency at which

|H ′DG(fT)|
∣∣∣∣
V D

appl=0

= 1
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holds. It can be approximated from the hybrid parameter measured at frequency
f0 as

fT ≈ |H ′DG(f0)|f0.

Unilateral Gain

The unilateral gain is defined as

U =
|Y ′DG − Y ′GD|2

4
(

Re(Y ′GG)Re(Y ′DD)− Re(Y ′GD)Re(Y ′DG)
) .

Rollet Factor

The Rollet factor is given by

K =
2Re(Y ′GG) Re(Y ′DD)− Re(Y ′DG Y

′
GD)

|Y ′DG Y
′

GD|
.

Maximum Oscillation Frequency

The maximum oscillation frequency is the frequency at which

U(fmax) = 1

holds. It can be extrapolated from a known frequency f0 using

f2
max ≈ U(f0)f2

0 .

A.3 Noise

Fano Factor

The Fano factor is the ratio of the drain current noise to the noise as if it were
pure shot noise. Thus, it is given by

F =
PDD

2qID
.

Drain Excess Noise Factor

The drain excess noise is defined as the ratio of the actual drain current noise
to the thermal noise floor:

γ =
PDD

4kBTgD0
,
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where gD0 is the drain self-admittance Y ′DD but at zero drain bias and zero
frequency, i.e.

gD0 = Y ′DD

∣∣∣∣
VDS= 0 V, f= 0 Hz

.

Gate Excess Noise Factor

The gate excess noise is the ratio of gate noise to the gate noise in a simple
charge sheet model. It is defined as

β =
PGG

4
5kBT

(ωCGS,sat)2

gD0

,

where the gate-source capacitance can be approximated using the equivalent
circuit representation of Eq. (5.4) which yields

ωCGS,sat ≈ Im(Y ′GG + Y ′GD)
∣∣∣
VDS=0.7V

,

in the low-frequency regime, i.e. as long as Y ′GG and Y ′GD are linear in the fre-
quency.

Cross-Correlation Coefficient

The cross-correlation coefficient is the cross power spectral density, normalized
by the gate and drain noise:

c =
PGD√
PGGPDD

.



Appendix B

Normalization

It is generally a good idea to normalize all quantities in such a way that their
order of magnitude is about the same in order to avoid numerical issues in the
implementation of the simulator. To this end, we use a temperature dependent
normalization. The procedure is as follows: A quantity, say X has units, say
[U ]. We then use the normalization U0 to determine X in simulator units as

Xsim =
X

U0
.

Any calculations in the implementation are conducted in simulator units. Let
us say that we compute some quantity Y sim with units [V ] in the end of our
simulation. Y sim could be a current or a density. In order to obtain the actual
result, we would need to multiply with the normalization V0, i.e.

Y = Y sim V0.

In the following we will list the temperature dependent normalization, where
T is the temperature, m0 is the electron rest mass, q is the positive electron
charge, ~ is the Planck constant, and kB is the Boltzmann constant. All other
units can be derived directly from these.

Unit Normalization Description

K0 = T kelvin

C0 = q coulomb

kg0 = m0 kilogram

eV0 = kBT electron volt

J0 = qkBT joule

m0 = ~qkBT/m0 meter

s0 = ~/kBT second

A0 = qkBT/~ ampere

V0 = kBT volt
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Appendix C

Discretized Power Spectral
Density

Due to the lengthiness of the equation for the discretized power spectral density
(PSD), we did not explicitly write it down in Sect. 4.6.3. But for completeness,
we still want to include the whole expression at this point. Recall that the total
PSD was given by the sum of the PSD of scattering processes and the PSD of
generation and recombination (GR) processes, i.e.

PI′C ,I
′
C′

(ω) = QI′C ,I
′
C′

(ω) +RI′C ,I
′
C′

(ω).

Scattering

The PSD of scattering processes is given by Eq. (4.39) and its discretization
reads

QI′C ,I
′
C′

= 2
∑

ν,ν′
ZvZv

′∑

i

∆yi
∑

η,σ

∑

j

min(∆Hν(yi, Hj),∆H
ν′(yi, Hj + σ~ωη))

× cν,ν′η (yi, Hj , Hj + σ~ωη)

×
[∑

m

Qν,ν
′

m (yi, Hj , Hj + σ~ωη) +
∑

m,n

Qν,ν
′

m,n(yi, Hj , Hj + σ~ωη)

+
∑

n,n,`

Qν,ν
′

m,n,`(yi, Hj , Hj + σ~ωη)
]

(C.1)

In the above expression, we need to use the very same box-integration method
in H-space, as in the Boltzmann equation, where the actual integrated volume
in H-space is the smaller of the two H-boxes of the initial and final states (see
Sect. 2.4.5):

min(∆Hν(yi, Hj),∆H
ν′(yi, Hj + σ~ωη)).
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The sum over η represents the sum over all scattering mechanisms with σ = ±1
for the inelastic inter-valley scattering with the associated energy transfers ~ωη
and σ = 0 for the elastic acoustic phonon scattering and surface roughness
scattering. Note that we assume that ~ωη has been mapped onto a multiple of
the H-grid spacing, such that Hj + ~ωη lies on an H-grid point.

Moreover, we defined multiple quantities depending on the Fourier coeffi-
cients. The first one is given by

Qν,ν
′

m (yi, Hj , Hj′)

∣∣∣∣
m even

=
1

Y0

{
(
GI
′
C
)ν
m

(yi, Hj)
((
GI
′
C′
)ν
m

(yi, Hj)
)∗
fν
′

0 (yi, Hj′)

−
[(
GI
′
C
)ν

0
(yi, Hj)

((
GI
′
C′
)ν′
m

(yi, Hj′)
)∗

+
(
GI
′
C
)ν′
m

(yi, Hj′)
((
GI
′
C′
)ν

0
(yi, Hj)

)∗]
fν
′

m (yi, Hj′)

}

when m is an even number. For an odd m, we need to average the quantities
defined on the adjoint grid as explained in Sect. 4.6.3, i.e. each product needs
to be averaged as a whole. For the above term this yields

Qν,ν
′

m (yi, Hj , Hj′)

∣∣∣∣
m odd

=
1

Y0

1

2

{
(
GI
′
C
)ν
m

(yi−, Hj)
((
GI
′
C′
)ν
m

(yi−, Hj)
)∗
fν
′

0 (yi, Hj′)

−
[(
GI
′
C
)ν

0
(yi, Hj)

((
GI
′
C′
)ν′
m

(yi−, Hj′)
)∗

+
(
GI
′
C
)ν′
m

(yi−, Hj′)
((
GI
′
C′
)ν

0
(yi, Hj)

)∗]
fν
′

m (yi−, Hj′)

+
(
GI
′
C
)ν
m

(yi+, Hj)
((
GI
′
C′
)ν
m

(yi+, Hj)
)∗
fν
′

0 (yi, Hj′)

−
[(
GI
′
C
)ν

0
(yi, Hj)

((
GI
′
C′
)ν′
m

(yi+, Hj′)
)∗

+
(
GI
′
C
)ν′
m

(yi+, Hj′)
((
GI
′
C′
)ν

0
(yi, Hj)

)∗]
fν
′

m (yi+, Hj′)

}
.

Bear in mind that on the first and last grid point, we only integrate over half
the box and there is no averaging necessary. For example, for the first grid point
the box ∆y1 goes from y1 to y1+, therefore evaluating the even harmonics on y1

and the odd harmonics on y1+ is sufficient without any averaging.
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The term proportional to two harmonics in Eq. (C.1) is given by

Qν,ν
′

m,n(yi, Hj , Hj′)

∣∣∣∣
m,n even

=

[(
GI
′
C
)ν
m

(yi, Hj)
((
GI
′
C′
)ν′
n

(yi, Hj′)
)∗

+
(
GI
′
C
)ν′
n

(yi, Hj′)
((
GI
′
C′
)ν
m

(yi, Hj)
)∗]

× fνm(yi, Hj)f
ν′
n (yi, Hj′)

If one or both of the harmonics is odd, we average as before. If, say, m is even
and n is odd, we find

Qν,ν
′

m,n(yi, Hj , Hj′)

∣∣∣∣m even
n odd

=
1

2

[(
GI
′
C
)ν
m

(yi, Hj)
((
GI
′
C′
)ν′
n

(yi−, Hj′)
)∗

+
(
GI
′
C
)ν′
n

(yi−, Hj′)
((
GI
′
C′
)ν
m

(yi, Hj)
)∗]

× fνm(yi, Hj)f
ν′
n (yi−, Hj′)

+
1

2

[(
GI
′
C
)ν
m

(yi, Hj)
((
GI
′
C′
)ν′
n

(yi+, Hj′)
)∗

+
(
GI
′
C
)ν′
n

(yi+, Hj′)
((
GI
′
C′
)ν
m

(yi, Hj)
)∗]

× fνm(yi, Hj)f
ν′
n (yi+, Hj′),

and completely analogous if m is odd and n is even or if both are odd.

The term in Eq. (C.1) with three Fourier harmonic coefficients reads

Qν,ν
′

m,n,`(yi, Hj , Hj′)

∣∣∣∣
m,n,` even

=
1

Y0

∫
dφ Ym(φ)Yn(φ)Y`(φ)

×
{
(
GI
′
C
)ν′
m

(yi, Hj′)
((
GI
′
C′
)ν′
n

(yi, Hj′)
)∗

× fν′` (yi, Hj′)

(
1

Y0
− fν0 (yi, Hj)

)

−
(
GI
′
C
)ν
m

(yi, Hj)
((
GI
′
C′
)ν
n
(yi, Hj)

)∗

× fν` (yi, Hj)f
ν′
0 (yi, Hj′)

}
.

The averaging when one or more of the harmonics are odd proceeds analgously
to the previous cases. The integral over the three Fourier harmonics is given by
Eq. (2.62).
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Generation and Recombination

The discretized PSD of the GR term on the contacts of Eq. (4.40) is given by

RI′C ,I
′
C′

= 2
∑

C0=S,D

∑

ν

Zv
∑

j

∆Hν(yC , Hj)

×
∑

m,n even

(
GI
′
C
)ν
m

(yC0 , Hj)
((
GI
′
C′
)ν
n
(yC0 , Hj)

)∗

× vGR

[
fνeq(yC0 , Hj)δm,n

+
(
1− 2fνeq(yC0 , Hj)

) ∑

` even

fν` (yC0 , Hj)

∫
dφ Ym(φ)Yn(φ)Y`(φ)

]
,

(C.2)

where the indices m, n, and ` only run over even numbers because the GR
rate is defined only on the direct grid points of the source and drain contacts.
Furthermore, the integral over the three Fourier harmonics is given by Eq. (2.62).

Bear in mind considerations relating degeneracy affect the GR noise just as
well. If we describe only one true state of a µ-times degenerate group, the total
noise is a factor of µ larger. Hence, when we consider our usual degeneracy of
µspin = µval = 2, we need to multiply the resulting PSD of the GR noise by a
factor of µspinµval = 4.

Obviously the GR rate only contributes at the positions yS and yD to the
noise, therefore the contribution of the GR term to the PSD per grid point in
transport direction (see Eq. (4.43)) is given by the respective term on the source
or drain contact grid point divided by ∆y of the source or drain grid point.



Nomenclature

An alphabetic list of acronyms and symbols used in this work. Symbols are
sorted according to their English spelling, e.g. ρ can be found at the position of
‘rho’ and Γ can be found at the position of ‘Gamma.’

Acronym Expansion

BE Boltzmann equation
BG bottom gate
CMOS complementary metal-oxide-semiconductor
D drain
DD drift-diffusion
DIBL drain-induced barrier lowering
GR generation and recombination
HD hydrodynamic
LA longitudinal acoustic
LBE Langevin-Boltzmann equation
LO longitudinal optical
MC Monte Carlo
MOSFET metal-oxide-semiconductor field-effect transistor
PE Poisson equation
PSD power spectral density
RF radio frequency
S source
SE Schrödinger equation
TG top gate
TA transverse acoustic
TO transverse optical
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Symbol Description

a aggregate index for the Poisson equation, see Eq. (2.105)
a0 silicon crystal lattice spacing, a0 ≈ 0.54 nm
AAC matrix of the full linear small signal system containing

both the linearized time-dependent Boltzmann equation
and the linearized quasistationary Poisson equation, see
Eq. (3.62)

AAC
e/e the matrix AAC but without the odd rows and columns

of the Boltzmann equation subspace, see Eq. (3.64)

AAC,BE
o/e the matrix containing the Boltzmann equation subspace

AAC but only the odd harmonic rows and even harmonic
columns, Sect. 3.6.2

AAC,BE
o/o the matrix containing the Boltzmann equation subspace

AAC but only the odd harmonic rows and columns,
Sect. 3.6.2

ABE matrix containing the discretized Boltzmann equations,
see Eq. (2.95)

ABE
e/e only the even rows and even columns of ABE, see

Eq. (2.100)
ADC Jacobian of the full Newton-Raphson approach in the

stationary case, see Eq. (2.107)
ADC
e/e ADC but only with the even rows and even columns in

the BE subspace, see Eq. (2.111)
α aggregate index of the Boltzmann equation, see

Eq. (2.86)
b aggregate index of the Poisson equation, see Eq. (2.105)

bC r.h.s. of the full small signal system with an applied bias
at contact C, see Eq. (3.62)

bCe same as bC but with the rows of odd harmonics removed,
see Eq. (3.64)

B matrix containing the Langevin-sources in the dis-
cretized Green’s function system, see Eq. (4.16)

Be same as B but does not contain the rows of odd harmon-
ics in the Boltzmann equation subspace, see Eq. (4.28)

BBE
o same as B but only includes rows of odd harmonics in

the Boltzmann equation subspace
β aggregate index of the Boltzmann equation, see

Eq. (2.86)
C,C ′ indices running over the contacts, C,C ′ ∈

{TG,BG,S,D}
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Ce same as CBE
e but for the whole Boltzmann and Poisson

equation system, see Eq. (2.110)
CBE
e compression matrix to remove all odd rows in the matrix

of the Boltzmann equation, see Eq. (2.99)
CBE
o compression matrix to remove all even rows in the ma-

trix of the Boltzmann equation, see Eq. (3.68)

cν,ν
′

η (y;k,k′) transition rate coefficient, see Eqs. (2.28), (2.31), (2.35)
CC,C′ capacitance matrix, see Eq. (3.41)
D set containing all 2D vectors in the device, r ∈ D ⊂ R2

Dac effective deformation potential of acoustic phonons, see
Eq. (2.26)

Dη phonon deformation potential of inter-valley transitions,
see Tab. 2.1

δx solution of the full Newton-Raphson system contain-
ing the distribution function and the potential, see
Eq. (2.108)

δxe same as δx but only even equations in the Boltzmann
equation part, see Eq. (2.111)

∆Hν(y,Hj) box in H-space surrounding the H-grid point Hj , see
Eq. (2.75)

∆xk box in x-direction surrounding the grid point xk
∆yi box in y-direction surrounding the grid point yi, see

Eq. (2.74)
∆z arbitrary length in the homogeneous z-direction
diag(d1, . . . , dn) n×n matrix with the diagonal elements d1, . . . , dn, and

all other elements zero
diag(A) matrix with the same number of rows and columns as

A, but only containing the elements of A on the main
diagonal

Ev(k) kinetic energy, see Eqs. (2.19), (2.49)
EC conduction band energy, see Eq. (2.42)
Eel electric field in y-direction

E
S/D
F Fermi energy of source or drain contact thermal baths,

see Eq. (2.46)
ex, ey, ez unit vectors in x-, y-, and z-direction, respectively
εν(y) subband energy in the valley and subband ν and at po-

sition y, see Eq. (2.7)
ε̃ν(y, t) time-dependent subband energy in the valley and sub-

band ν and at position y, see Eq. (3.6)
εν(y) small signal phasor of subband energy in the valley and

subband ν and at position y, see Eq. (3.8)
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f frequency
fν(y,k) distribution function of the stationary Boltzmann equa-

tion, see Sect. 2.4.1

f̃ν(y,k, t) distribution function of the time-dependent Boltzmann
equation, see Eq. (3.4)

fν(y,k) small signal phasor of the distribution function, see
Eq. (3.4)

fnorm,C
α

normalized small signal phasor of the distribution func-
tion, see Eq. (3.61)

fνeq(y,k) equilibrium distribution function

f̃νeq(yS/D, H, t) time-dependent equilibrium distribution function, see
Eq. (3.30)

F force acting on electrons, see Eq. (2.14)
F r.h.s. of full Newton-Raphson system, containing the

Boltzmann and Poisson equations, see Eq. (2.108)
FBE stationary Boltzmann equation, see Eq. (2.12)

F̃BE full Boltzmann equation, see Eq. (3.2)

FBE small signal phasor of Boltzmann equation, see
Eq. (3.10)

F e same as F but only even equations in the Boltzmann
equation part, see Eq. (2.111)

FPE stationary Poisson equation, see Eq. (2.5)

F̃PE quasistationary Poisson equation with time-dependent
variables

FPE small signal phasor of Poisson equation, see Eq. (3.13)
G matrix consisting of the Green’s functions of the distri-

bution function and the Green’s functions of the poten-
tial, see Eq. (4.16)

Ge same as G but does not contain rows of odd harmonics
in the Boltzmann equation subspace, see Eq. (4.28)

GBE
o same as G but only contains the rows of odd harmonics

in the Boltzmann equation subspace, see Eq. (4.29)(
Gf
)ν,ν′

(y,k; y′,k′) Green’s function of the distribution function with a
Langevin-source in the Langevin-Boltzmann equation,
see Eq. (4.10)

GV (r; r′) Green’s function of the potential with a Langevin-source
in the Poisson equation, see Eq. (4.11)

GICζ Green’s function of the terminal current at contact C for
a Langevin-source at the coordinates ζ, see Eq. (4.23)

G
I′C
ζ same as GICζ but for the terminal current per length in

z-direction



219

GI′C vector with the elements consisting of the Green’s func-

tions, G
I′C
ζ , see Eq. (4.26)

γ aggregate index running over both the Boltzmann equa-
tion and the Poisson equation, see Eq. (4.15)

γν,C(y;k,k′) transition rate of the boundary generation and recombi-
nation term, see Eq. 2.37

Γν(y,k) boundary generation and recombination rate, see
Sect. 2.4.3

Γ̃ν(y,k, t) boundary term of time-dependent Boltzmann equation,
see Eq. (3.2)

Γ̃ν(y, t) boundary term of time-dependent Boltzmann equation
integrated over k-space, see Eq. (3.36)

Γα small signal phasor of boundary term of time-dependent
Boltzmann equation, see Eq. (3.31)

H total energy, variable in H-transformed energy space,
see Eq. (2.65)

Ĥ Hamilton operator, see Eq. (2.7)
~ Planck’s constant divided by 2π
IC stationary terminal current at contact C

ĨC(t) time-dependent terminal current at contact C, see
Eq. (3.33)

IC small signal phasor of terminal current at contact C, see
Eq. (3.45)

I ′C small signal phasor of terminal current per length in z-
direction at contact C, see Eq. (3.46)

I unit matrix
j(y) electron sheet current density in y-direction at position

y, see Eq. (A.8)
jν(y) electron sheet current density in y-direction in the sub-

band ν at position y, see Eq. (A.6)

j̃ν(y) time-dependent electron sheet current density in y-
direction

jν(y) small signal phasor of electron sheet current density in
y-direction, see Eq. (A.17)

J̃
ν
(r, t) time-dependent current density in the subband ν, see

Eq. (3.34)

J̃
ν
y(r, t) y-component of time-dependent current density in the

subband ν, see Eq. (3.35)
jmin H-space index of the energetically lowest non-zero H-

box
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KC,C′(y) power spectral density of terminal currents per grid
point in y-direction, see Eq. (4.43)

KC,C′(y,H) power spectral density of terminal currents per grid
point in y- and H-direction, see Eq. (4.44)

KνC,C′(y,H) power spectral density of terminal currents per grid
point in y- and H-direction and subband ν, see
Eq. (4.45)

kB Boltzmann constant
κ(r) dielectric constant, see Eq. (2.1)
Lν(y,k) stationary free streaming term, see Sect. 2.4.1

L̃ν(y,k, t) free streaming term of time-dependent Boltzmann equa-
tion, see Eq. (3.2)

Lνm(y,H) small signal phasor of free streaming term of time-
dependent Boltzmann equation

m0 electron rest mass
md Herring-Vogt mass, see Eq. (2.48)
mx effective mass in x-direction, see Sect. 2.4.1
my effective mass in y-direction, see Sect. 2.4.1
mz effective mass in z-direction, see Sect. 2.4.1
µ multiplicity, see Sect. 2.4.6
µspin spin multiplicity, see Eq. 2.92
µval valley multiplicity, see Eq. 2.93
n total dimension of the discretized full Newton-Raphson

Jacobian but only considering even harmonics, n =
NBE/2 +NPE

n(y) electron sheet density at position y, see Eq. (A.2)
nν(y) electron sheet density in the subband ν at position y,

see Eq. (A.1)
ñ(y, t) time-dependent electron sheet density, see Eq. (3.24)
n(y) small signal phasor of electron sheet density, see

Eq. (3.24)
n3D(r) 3D electron density, see Eq. (A.4)
nν3D(r) 3D electron density per subband, see Eq. (A.3)
n3D(r) small signal phasor of the 3D electron density, see

Eq. (3.17)
nνeq(y) electron sheet density in the subband ν in equilibrium

ni intrinsic carrier density
nλ phonon number, see Eq. (2.25)
N eff

3D effective density of states of silicon in 3D, see Eq. (2.44)
N total dimension of the discretized full Newton-Raphson

Jacobian, N = NBE +NPE
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NA acceptor doping density, see Eq. (2.2)
NBE dimension of the discretized Boltzmann equation system
ND donor doping density, see Eq. (2.2)
NPE dimension of the discretized Poisson equation system
Nx highest index of grid in x-direction, see Sect. 2.3.3
Ny highest index of grid in y-direction, see Eq. (2.72)
NH highest index of grid in H-direction, see Eq. (2.73)
∇r Nabla-operator in real space
∇k Nabla-operator in k-space
ν combined valley and subband index, ν = (v, s), see

Sect. 2.4.1
offdiag(A) matrix identical to A except the elements on the main

diagonal are set to zero
ω angular frequency
PI′C ,I

′
C′

(ω) power spectral density of the terminal currents, see
Eq. (4.41)

PC,C′(ω) same as PI′C ,I
′
C′

(ω), see Eq. (4.42)

PI′C
terminal current projection operator, see Eq. (3.66)

∂D boundary of the device set D
∂DC set comprising only the contact C
ϕMS metal-semiconductor work function difference
Ψν(r) wave function of the Schrödinger equation, see Eq. (2.7)

Ψ̃ν(r, t) time-dependent wave function of the Schrödinger equa-
tion, see Eq. (3.7)

Ψν(r) small signal phasor of the wave function of the
Schrödinger equation, see Eq. (3.9)

q positive elementary charge
QI′C ,I

′
C′

(ω) power spectral density of terminal currents from scat-
tering processes, see Eq. (4.36)

r 2D spatial vector, r =
(
x y

)t
Rν,ν

′
(y) overlap integral, see Eq. (2.27)

RI′C ,I
′
C′

(ω) power spectral density of terminal currents from gener-
ation and recombination processes, see Eq. (4.38)

ρ(r) space charge density, see Eq. (2.2)
Sν(y,k) scattering term, see Sect. 2.4.2

S̃ν(y,k, t) scattering term of time-dependent Boltzmann equation,
see Eq. (3.2)

S̃ν(y, t) scattering term of time-dependent Boltzmann equation
integrated over k-space, see Eq. (3.36)

Sν(y) small signal phasor of scattering term of Boltzmann
equation integrated over k-space, see Eq. (3.2)
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Sν,ν
′

η (y;k,k′) transition rate of the scattering term, see Eq. (2.20)
S same as SBE but for the full system, see Eq. (2.109)
SBE linear transformation to eliminate the odd distribu-

tion functions in the even equations of the BE, see
Eqs. (2.96), (2.97)

s subband index, see Eq. (2.7)
T temperature, 300 K throughout this work

T̃ ν(y,k, t) time-derivative of the Boltzmann equation, see Eq. (3.3)
T νm(y,H) m-th harmonic of small signal phasor of time-derivative

of the Boltzmann equation, see Eq. (3.20)
T vHV Herring-Vogt transformation matrix, see Eq. (2.48)
(T vHV)yy yy-component of Herring-Vogt transformation matrix,

see Eq. (2.48)
Θ(·) Heaviside step-function
v valley index of the silicon band structure, see Sect. 2.4.1
vν(k) electron group velocity, see Eq. (2.50)
vνy (k) electron group velocity in y-direction

vGR recombination velocity, see Eq. (2.37)
V (r) quasistatic electric potential, see Eq. (2.1)

Ṽ (r, t) time-dependent electric potential, see Eq. (3.5)
V (r) small signal phasor of electric potential, see Eq. (3.5)

V norm,C
a normalized small signal phasor of electric potential, see

Eq. (3.61)
V(r) potential energy, see Eq. (2.8)
V C

appl applied bias at contact C

Ṽ C
appl(t) applied bias including small signal perturbation, see

Eq. (3.1)

V C
appl small signal phasor of applied bias, see Eq. (3.1)

VT thermal voltage, VT = kBT/q
x confinement direction, see Fig. 2.1
xC solution of the full small signal system for a small signal

bias applied to contact C, see Eq. (3.63)
xCe same as xC but only containing phasors of even distri-

bution functions see Eq. (3.64)
xk k-th grid point in x-direction
ξνBE(y,k, t) Langevin-source term in the Boltzmann equation, see

Eq. (4.6)
ξνPE(r, t) Langevin-source term in the Poisson equation, see

Eq. (4.8)
y transport direction, see Fig. 2.1
yD position of the drain contact in y-direction
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yi i-th grid point in y-direction
yS position of the source contact in y-direction
Y admittance matrix
Y ′ admittance matrix per length in z-direction
Ym(φ) m-th Fourier harmonic, see Eq. (2.55)
z homogeneous direction, see Fig. 2.1
Zv 2D density of states, see Eq. (2.57)
ζ location of the Langevin-source; either a Boltzmann

equation index like α or a Poisson equation index like a;
see Sect. 4.4
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Elektrizitätsleitern,” Annalen der Physik, vol. 362, no. 23, pp. 541–567,
1918. [Online]. Available: http://dx.doi.org/10.1002/andp.19183622304

[111] A. Papoulis, Probability, Random Variables, and Stochastic Processes,
4th ed. McGraw–Hill, 2001.

[112] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality
of inversion layer mobility in Si MOSFET’s: Part I–Effects of substrate
impurity concentration,” Electron Devices, IEEE Transactions on, vol. 41,
pp. 2357–2362, 1994.

[113] K. Uchida, J. Koga, and S.-i. Takagi, “Experimental study
on electron mobility in ultrathin-body silicon-on-insulator
metal-oxide-semiconductor field-effect transistors,” Journal of
Applied Physics, vol. 102, no. 7, 2007. [Online]. Available:
http://scitation.aip.org/content/aip/journal/jap/102/7/10.1063/1.2785957

[114] G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against
carrier concentration in arsenic- and phosphorus- and boron-doped sili-
con,” Electron Devices, IEEE Transactions on, vol. 30, no. 7, pp. 764–769,
1983.
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