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Preface

After the invention of the first bubble chambers and spark chambers in the
1950’s, particle physicists discovered a rich spectrum of hadrons, which could
not be explained by the physics of that time. In the following time, a classi-
fication by charge, isospin and later by strangeness occured. Then, in 1963,
Gell-Mann and Zweig noticed a pattern in this spectrum which led them
to the conclusion that the hadrons consist of smaller particles that come in
different flavors, which were later called quarks. However, another degree of
freedom was necessary due to the ∆++ baryon, which consists of three up
quarks with parallel spins. The existence of such a particle would violate the
antisymmetry of fermion wave functions, if there were not another quantum
number to restore the symmetry properties. This problem was solved in 1965
by the introduction of the color charge, which could be implemented via the
SU(3) color gauge group to obtain the Lagrangian of quantum chromody-
namics. In the following years experiments were conducted to test properties
like asymptotic freedom, confinement, the running coupling constant, and to
find evidence for the gluons, which are the gauge bosons of the SU(3) gauge
group.

As evidence for the validation of quantum chromodynamics grew, it also
became clear that any calculations in the low-energy regime with the usual
perturbative expansion are futile due to the large coupling constant at low
energies. Though, when Weinberg introduced his approach to effective field
theories [1], it followed that by treating the Goldstone bosons as degrees
of freedom and by introducing an appropriate power counting scheme, a
perturbative low-energy expansion of quantum chromodynamics would yield
meaningful results.

However, the rich hadron spectrum is still not understood well. If those
hadron resonances, as they appear in the cross sections, are not included
explicitly in the Lagrangian, a perturbative expansion can not describe that
cross section adequately in the vicinity of the resonance.

But new possibilities open when using unitarized amplitudes. The con-
cept of unitarization is to resum Feynman diagrams in a geometric series,
in which case the amplitude will always be exactly unitary. Among the uni-

7



8 CONTENTS

tarized models some methods have become popular, as e.g. the K-matrix
approach, which was first introduced by Wigner [2], and Wigner and Eisen-
bud [3], and the inverse amplitude method, as e.g. in [4]. Both are so-called
on-shell approaches, where the off-shell contribution of loops is neglected.
More recently, Borasoy, Bruns, Meißner and Nißler used a model that also
incorporates off-shell contributions by means of solving the Bethe-Salpeter
equation. The off-shell contributions were discovered to be non-negligible
and thus such a full off-shell approach, although more involved, should in
principle be superior to the on-shell approaches.

This diploma thesis is based on the model developed by Borasoy, Bruns,
Meißner and Nißler which was already used to calculate the kaon-electro-
production amplitude [5]. In the following that model will be used to cal-
culate the pion-nucleon scattering and the η-photoproduction off protons,
whereas the last chapter deals with an extension for that model.



Chapter 1

Introduction

This chapter shall introduce the formalism of this thesis, as well as some basic
knowledge about quantum field theory which is necessary to understand the
following chapters.

The introduction will be dealing with the S-Matrix, followed by the con-
cept of unitarity and hence the Bethe-Salpeter equation. Afterwards, there
is a section about gauge invariance and sections about chiral perturbation
theory and baryon chiral perturbation theory.

1.1 The S-matrix and unitarity

In 1943 W. Heisenberg set the foundations for S-matrix theory [6, 7] and
until the 1960’s it was believed that S-matrix theory could be an alternative
for the conventional quantum field theory. However, S-matrix theory has its
limitiations, i.e. nowadays the S-matrix and its properties are used alongside
quantum field theory as a theoretical tool rather than standing on its own.

The S-matrix describes the probability amplitude of a transition between
abstract ’in’ and ’out’ states at times tin → −∞ and tout →∞, respectively
(see e.g. section 3.1 in [8]):

Sβα = 〈β; out|α; in〉, (1.1)

where β and α represent any quantum numbers necessary to describe the
multiparticle states (e.g.: momenta, masses, spins, etc.). Such states are, in
good approximation, prepared by experimentalists, since the usual interac-
tion time is significantly smaller than the time of flight from the reaction-
vertex to the detector. And since those states are the only observables, they
form the basis of S-matrix theory.

The S-matrix has some important properties that can be derived using
the principles of quantum mechanics: It is known that the superposition prin-
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ciple and energy-momentum conservation for particles are valid and hence
they are employed in S-matrix theory. Lorentz invariance is necessary, for
when changing the frame of reference the elements of the S-matrix should
remain the same. The cluster decomposition law ensures that two sets of
particles at a sufficiently large distance to each other do not influence their
respective scattering processes. Crossing symmetry implements the sym-
metry between particles and their corresponding anti-particles. Maximal
analyticity guarantees that the S-matrix has no other singularities than re-
quired by unitarity and crossing (for an introduction to S-Matrix theory, see
e.g. [9]).

Lastly, the key property for this work is the unitarity of the S-Matrix.
The unitarity condition for the S-Matrix of eq. (1.1) can be evaluated using
(see e.g. section 3.2 of [8]):∫

dγ S∗γβSγα =
∫
dγ 〈β; in|γ; out〉〈γ; out|α; in〉 = 〈β; in|α; in〉,

where the integration is over intermediate particle states and completeness
of the states was used. Because of the orthogonality relation

〈β; in|α; in〉 = 〈β; out|α; out〉 = 〈β|α〉 = δβα,

where |β〉 and |α〉 are ordinary free states of the underlying theory, the
unitarity condition simplifies to∫

dγ S∗γβSγα = δβα. (1.2)

In other words, unitarity ensures the proper normalization of the in and
out states of the S-Matrix, which can be interpreted as a conservation of
probability: If an initial state is normalized to ’1’, a unitary S-Matrix leads
to final states whose sum is also normalized to ’1’.

In order to bring the unitarity condition in a more practical form, the
S-operator will be introduced, which links the in and out states to free states
|α〉 and |β〉 of the underlying theory,

Sβα = 〈β; out|α; in〉 = 〈β|S|α〉.

Then, the unitarity condition of eq. (1.2) can be rewritten as

δβα =
∫
dγ 〈β|S†|γ〉〈γ|S|α〉 = 〈β|S†S|α〉,

or equivalently
S†S = 1. (1.3)

A convenient choice to express the S-operator is to split it into two parts:

S = 1 + iT . (1.4)
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The ’1’ represents processes where the particles do not interact, which in
terms of Feynman diagrams would be represented as disconnected lines, and
the reaction matrix T describes all possible interactions. Inserting eq. (1.4)
into eq. (1.3) leads to the common unitarity condition for the reaction matrix:

−i(T − T †) = T †T . (1.5)

This can be transferred to a physical basis by multiplying states from left
and right and by inserting a basis in between T † and T on the right hand
side:

−i
[
〈β|T |α〉 − 〈α|T |β〉∗

]
=
∫
dγ 〈γ|T |β〉∗ 〈γ|T |α〉. (1.6)

1.2 Resonances and the Bethe-Salpeter equation

Consider a scattering process as illustrated in fig. 1.1, where an intermediate
bound state (or resonance) forms out of the particles of the underlying theory.

X

Figure 1.1: A scattering process of two particles (dashed and solid lines), forming an in-
termediate state (double solid line) that is called X. The shaded areas represent arbitrary
interactions.

Such resonances should somehow be accounted for by the theoretical
approach as their appearance in cross sections from experiments is often
dominant. One ansatz is to explicitly introduce these resonances as new
particles in a model. The particle X in fig. 1.1 would then be represented by
a propagator with bare mass MX . However, in this work another ansatz will
be considered, in which it is possible to generate resonances dynamically by
means of a resummation of Feynman diagrams, and which allows a deeper
insight into the nature of the resonances. The necessity of a resummation
method is due to the fact that the resonance is not explicitly included in
the model. Thus, in a model where the resonance is generated dynamically,
the squared mass M2

X appearing in the propagator has to be a function
f(m,µ, g) of the model parameters, i.e. massesm, renormalization constants
µ and couplings g. Note, that the function f(m,µ, g), and hence the pole
position of the resonance X, is only µ-dependent due to the particular ansatz
of a non-perturbative model like a resummation. Then, an expansion of the
propagator as a power series in the squared center-of-mass energy s in the
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vicinity of the closest threshold sthr < M2
X leads to

1
s−M2

X

=
1

s− f(m,µ, g)
=

1
sthr − f(m,µ, g)

− s− sthr
(sthr − f(m,µ, g))2

+
(s− sthr)2

(sthr − f(m,µ, g))3 +O
(

(s− sthr)3
)
,

where s > sthr. The terms on the r.h.s. are equivalent to a series of local cou-
plings in the Lagrangian, i.e. including the resonance explicitly as a particle
in the Lagrangian and then integrating the resonance out by means of the
path integral method will introduce these local couplings. If s approaches
M2
X , higher order terms of the series become increasingly important and thus

a perturbative low-energy expansion becomes useless, as it is only possible
to sum a limited number of Feynman diagrams. However, with an adequate
resummation method such a power series can be generated without the ne-
cessity for explicit inclusions of resonances.

In general, there are infinitely many ways how to resum Feynman dia-
grams, but as a resummation does not follow the pertinent rules of pertur-
bation theory, the properties of perturbation theory are different from what
resummation methods yield. An arbitrary resummation will in general not
fulfill any requirements of S-matrix theory. Therefore a prescription has to
be used that ensures certain properties. However, currently there is no re-
summation prescription that ensures all requirements of S-matrix theory.

The most common resummation method is to use the solution of the
Bethe-Salpeter equation (BSE), which is a relativistic two-particle equa-
tion [10]. In operator form, the BSE is given by

T = V + V G T ,

where T is the reaction operator, V represents a real two-particle irreducible
potential and G is a two-particle propagator in operator form. Multiplying
by an initial state |α〉 from the right and by a final state 〈β| from the left,
and inserting a basis

∫
dγ|γ〉〈γ| between V and G and a basis

∫
dσ|σ〉〈σ|

between G and T leads to

Tβα = Vβα +
∫ ∫

dγ dσ Vβγ GγσTσα, (1.7)

where the shorthand notation Oβα = 〈β|O|α〉 for an arbitrary operator O
was used. Here, each state consists of two particles described by a set of
quantum numbers, however, different states may contain different particles
if the potential Vβα allows for those transitions. In the following, a two-
particle state consisting of two specified particles is referred to as a channel.
Note, that e.g. Oβα are the components of a matrix O in channel space.
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Furthermore, the integral indicates integration over loop momenta of the
intermediate states, but a summation over equal indices is also implied in
order to include all possible intermediate channels.

Since Gγσ is an ordinary two-particle propagator, it can not change the
particle states, or in other words: it contains a delta function δ(γ − σ).
Therefore eq. (1.7) can be reduced to

Tβα = Vβα +
∫
dγ VβγGγγTγα

= Vβα +
∫
dγ TβγGγγVγα,

(1.8)

where in the second step a symmetry relation for the BSE was used, which
can be proven by explicitly considering a kernel and the two-particle propa-
gator. Then, if the integral is iterated, one can easily see that the symmetry
relation is fulfilled.

The great advantage of the BSE is that any solution T leads to a unitary
S-matrix. To see this, the BSE can be inserted into the unitarity condition of
eq. (1.6), but as Tβα and Gγγ are potentially elements of the Clifford algebra,
the adjoint shall be denoted by Ōβα = γ0O

†
βαγ0, where the O†βα also implies

transposition in channel space. Furthermore, using V̄αβ = Vβα, which is a
necessary condition for the BSE to yield unitary solutions [10], leads to

Tβα − T̄αβ = Vβα +
∫
dγ VβγGγγTγα − T̄αβ

= V̄αβ +
∫
dγ V̄γβGγγTγα − T̄αβ +

∫
dγ T̄γβGγγTγα

−
∫
dγ T̄γβGγγTγα

= − (T̄αβ − V̄αβ) +
∫
dγ T̄γβGγγTγα −

∫
dγ(T̄γβ − V̄γβ)GγγTγα

= −
∫
dσ V̄ασḠσσT̄σβ︸ ︷︷ ︸

T̄σβḠσσVσα

+
∫
dγ T̄γβGγγTγα

−
∫
dγ

∫
dσ V̄γσḠσσT̄σβ︸ ︷︷ ︸

T̄σβḠσσVσγ

GγγTγα

=
∫
dγ T̄γβGγγTγα −

∫
dσ T̄σβḠσσ

(
Vσα +

∫
dγ VσγGγγTγα

)
=
∫
dγ T̄γβGγγTγα −

∫
dσ T̄σβḠσσTσα

=
∫
dγ T̄γβ

(
Gγγ − Ḡγγ

)
Tγα,
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where extensive use of eq. (1.8) and its adjoint was made. The quantity
Gγγ − Ḡγγ is equivalent to setting the intermediate particles on shell (see
e.g. section 7.3 of [11]), and thus, at least for energies below the lowest three-
particle threshold, the above unitarity condition is equivalent to eq. (1.6).

Later in this work, amplitudes with one initial particle and two final par-
ticles will occur. In that case, the BSE can not be used as above. However,
unitarity can still be achieved in the ’subspace’ of meson-baryon scattering1:
Consider a scattering amplitude T that solves the BSE with a potential V ,
like above. Then, the amplitude

Mβα = M0
βα +

∫
dγ TβγGγγM

0
γα

is unitary in the sense that any process described by the real kernel M0 will
be accompanied by an exactly unitary final state interaction. In that sense
M contains the full information, i.e. any dynamically generated resonance,
of the scattering process T . In the remainder of this work, this property
will be referred to as ’partial unitarity’. Note, that M0 in this work will
be a process with one initial particle and two final particles, but in gen-
eral M0 could have an arbitrary number of initial states. Though, M0 has
to have two final particles due to the definition of the scattering amplitude T .

As mentioned earlier, the great advantage of solutions of the BSE is
that they can generate resonances dynamically and every solution is exactly
unitary, therefore such approaches are also called ’unitarized’. In contrast to
that, perturbative approaches can only satisfy unitarity order by order and
resonances must be included explicitly to obtain meaningful results in the
vicinity of such resonances.

However, the solution of the BSE also has some drawbacks: Crossing
symmetry can not be maintained by this approach. Even if the interaction
kernel is crossing symmetric, the solution of the BSE is not. Maximal ana-
lyticity can also not be guaranteed ab initio as solutions of the BSE contain,
among the dynamically generated resonances, unphysical poles on the first
Riemann sheet as well as resonances that appear without any correspondents
in experiments and shadow poles, i.e. resonances that appear on multiple
sheets (see [12] for a discussion on the nature of resonances). Nevertheless,
when restricted to a certain process, the BSE yields good results in the phys-
ical region of this process, especially when there are resonances that can be
generated dynamically by the BSE.

1The word ’subspace’ does not refer to a subspace in the mathematical sense, but
rather to the part of the corresponding Feynman diagram that has two initial and two
final particles, which in this case is the scattering amplitude T .
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Note, that the BSE contains divergences of the loop integrations which
have to be renormalized. Throughout this work, the dimensional regular-
ization scheme will be employed, where the limit d → 4 is taken after the
divergent terms were subtracted in each integral. However, the divergences
can not be absorbed by a finite number of counter terms in the Lagrangian,
since this would spoil the solution of the BSE. In fact, any counter term
in the Lagrangian would be crossing symmetric while solutions of the BSE
violate crossing symmetry (see e.g. [15] for a thorough treatment of renor-
malization in that case). The usual framework for these divergences is to
absorb them into the coupling constants appearing in the interaction kernel,
which renders the amplitudes finite. This procedure is not related to the
proper field theoretical treatment of renormalization in perturbation theory,
but, as of now, there is no rigorous non-perturbative renormalization scheme
for the solutions of the BSE.

1.3 Gauge invariance

Formulating quantum theories of massless vector particles needs a specific
treatment. It is not possible to simply consider the limit of zero mass of a
theory with massive vector particles as this would render the corresponding
propagators to be infinite, which reflects the fact that there is no way to
construct a four-vector, in the sense of Lorentz transformations, for mass-
less particles out of creation and annihilation operators of helicity ±1. In
general, massless fields constructed with creation and annihilation operators
of helicity ±1 can only transform as a four-vector up to an additional local
gauge term. This peculiar difficulty can be circumvented by demanding that
the part of the action involving the massless vector field and its interactions
with other fields is invariant under those gauge transformations, which then
is called gauge invariance (see chapter 8 in [8]).

The more conventional or modern point of view is that gauge invariance
itself is a principle and therefore the starting point when coupling mass-
less vector particles to matter fields. For example, consider the Lagrangian
density of free spin-1/2 particles: Enforcing invariance under local phase
transformations, i.e. local U(1) transformations, by means of the minimal
coupling approach leads to a new covariant derivative which includes a new
massless vector particle, a so-called gauge-boson. Of course, the kinetic term
of the gauge-bosons has to be included to allow for their propagation. The
result is the common quantum electrodynamics (QED) Lagrangian, where
the gauge-bosons are indeed photons. Similarly, although more involved,
the quantum chromodynamics (QCD) Lagrangian can be derived by enforc-
ing local SU(3) invariance. The main difference to the QED case is that
SU(3) invariance demands a total of eight gauge-bosons − the number of
gauge-bosons necessary to accomplish invariance under a gauge-group is the
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number of generators of said gauge-group. Therefore the QCD Lagrangian
is far more complicated and involves severely different physics than the QED
Lagrangian.

In this work, one of the main goals is to couple a photon in a gauge-
invariant manner to a non-perturbatively evaluated model amplitude, i.e.
the main concern of the remainder of this section is to deal with local U(1)-
invariance as found in the QED Lagrangian. Recall, that gauge invariance
in perturbation theory is achieved by simply including all possible Feynman-
diagrams up to a given order. In a visual way, this means that the photon
must be coupled to any charged particle in the diagram2, also if it is off-
shell, reflecting the charge conservation principle. Following this notion,
gauge invariance in a non-perturbative model, like the resummation method
of the BSE, can be implemented by adding up the Feynman diagrams where
the photon couples to the external lines as well as the diagrams where the
photon couples to internal lines. However, as the solution of the BSE is in
fact an infinite series of Feynman diagrams, there are also infinitely many
internal lines. To see how this problem can be solved, consider the BSE of
eq. (1.8) in terms of Feynman diagrams:

= + ,

where the shaded circle represents the amplitude T and the white square
represents the interaction kernel V . The dashed and solid lines may be any
pair of particles, that interact with each other or that are taken to another
pair of particles via the potential V . Iterating the BSE leads to:

= +

+ + . . . ,

where the so-called bubble-chain on the r.h.s. is an infinite geometric series
of loops, i.e. the ellipsis stands for any diagrams obtained by an iteration of
the BSE that are of higher order in the potential V . For brevity, consider a
theory where the photon only interacts with the particles represented by the
solid lines. Then, coupling a photon to every internal line of the bubble-chain

2This is the case in QED, but later in this work a coupling of the photon to certain neu-
tral particles will emerge from the next-to-leading order meson-baryon chiral Lagrangian,
where the photon also has to be coupled to these particles.
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and adding all those Feynman diagrams can be simplified to

+ + + . . .

= ,

where the ellipsis stands for any diagrams obtained from the iteration of the
BSE with photons coupled to any possible solid internal line. Furthermore,
the shaded circle represents the solution T of the BSE. The Feynman dia-
gram on the r.h.s. apparently involves all possible couplings of a photon to
internal lines. Moreover, for theories with other photon couplings, an analo-
gous Feynman diagram has to be computed for each interaction. Note, that
in addition to the photon coupling to internal lines, every diagram where
the photon couples to external lines has to be considered, too. But this is
trivial, since there are only a finite number of external lines.

To be sure that gauge invariance is indeed satisfied, the Ward-Takahashi
identity can be used (see section 7.4 in [11]), i.e. any gauge-invariant am-
plitude εµ(k)Mµ(k) of a QED process involving an external photon with
momentum k satisfies

kµMµ(k) = 0.

This identity will be verified in later chapters to prove that the above ap-
proach for implementing gauge invariance succeeds.

1.4 Chiral perturbation theory

Chiral perturbation theory (ChPT) was developed in order to circumvent
the large coupling of quantum chromodynamics (QCD) at low energies which
renders any perturbative approach useless. It is based on the knowledge that
the QCD Lagrangian exhibits a chiral symmetry in the chiral limit, i.e. in
the limit of zero quark masses. This symmetry can then be used to con-
struct an effective low-energy Lagrangian by enforcing the chiral symmetry
and introducing an appropriate power-counting scheme to put the terms in
an order of the importance of the arising terms [1].

The QCD Lagrangian reads3

LQCD = q̄if (iγµDµ,ij − δijmf )qjf −
1
4
GaµνG

a,µν , (1.9)

3Sometimes an additional term is included in the QCD Lagrangian that is proportional
to the so-called vacuum angle θ. However, this term would be responsible for CP violations,
but as there is now evidence from experiments for such violations, the term is usually set
to zero.
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where summation over repeated indices is implied, qif denotes a quark field
with color i ∈{red, green ,blue} and with flavor f ∈{up, down, charme,
strange, top, bottom}, the covariant derivative is given by

Dµ,ij = δij∂µ + igtaijA
a
µ

and the field strength tensor reads

Gaµν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν .

Here, g is the coupling constant of QCD, Aaµ are the eight gluon fields, and ta

and fabc are the generators and structure constants of the SU(3) gauge group
of QCD, respectively. QCD earns its complicated nature mostly through the
particular form of the field strength tensor Gaµν : The term −gfabcAbµAcν is
responsible for a three-gluon vertex and a four-gluon vertex. Those vertices
contribute to the calculation of the running coupling constant by means
of the renormalization group theory in that they increase the coupling at
low-energies, also called confinement, whereas at high energies the coupling
decreases and reaches eventually zero, also known as asymptotic freedom.

In the limit of vanishing quark masses, mf → 0, the QCD Lagrangian
becomes

LQCD
mf→0
−→ iq̄ifγ

µDµ,ijq
j
f −

1
4
GaµνG

a,µν . (1.10)

This limit is called the ’chiral limit’, but it is only reasonable if the quark
masses that are set to zero are small compared to the characteristic scale of
the interaction. As a consequence, the six flavors of quarks can be divided
into the three light quarks u, d and s, whose masses are well below 1GeV, and
the three heavy quarks c, b and t, whose masses are above 1GeV. The scale of
1GeV is associated with the masses of the lightest hadrons containing light
quarks4, e.g. the ρ with its mass being mρ = 770MeV. In this work, only
the three light quarks are taken into account, since their mass is negligible
compared to the center-of-mass energy encountered in the η-photoproduction
process. Hence from now on, flavor sums, e.g. in eq. (1.10), only involve the
flavors u, d and s (up, down and strange).

In the chiral limit, the Lagrangian of eq. (1.10) can be rewritten as

L0
QCD = iq̄Lγ

µDµqL + iq̄Rγ
µDµqR −

1
4
GaµνG

a,µν , (1.11)

where color and flavor indices were omitted for brevity and

qL = PLq =
1
2

(1− γ5)q, qR = PRq =
1
2

(1 + γ5)q.

4Excluding Goldstone bosons. Those will be introduced later in this section.
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PL and PR are projection operators that project the quark fields q to their
chiral components qL and qR, respectively. This leads to the new global
symmetry

U(3)L × U(3)R

of the chiral QCD Lagrangian in flavor space, i.e. L0
QCD is invariant under

independent global unitary transformations

qL → LqL , qR → RqR,

where L ∈ U(3)L and R ∈ U(3)R. This global symmetry can be decomposed
according to

U(3)L × U(3)R = SU(3)V × SU(3)A × U(1)V × U(1)A,

where the subscript V stands for vector transformations defined by R = L,
and the subscript A stands for axial transformations defined by R = L†.

However, the above decomposition of the symmetry of L0
QCD is not real-

ized in nature, at least not in this way. The axial group U(1)A is known to
be broken by an anomaly [13, 14], whereas U(1)V can be associated with the
quark or baryon number conservation. In fact, U(1)V is also a symmetry of
LQCD of eq. (1.9), i.e. for non-vanishing quark masses.

As for the remaining symmetry groups SU(3)L × SU(3)R, there is am-
ple evidence that those are broken down to only the vectorial subgroup
SU(3)V [16]. If SU(3)L × SU(3)R were a symmetry of QCD, the hadron
spectrum would be parity-doubled, but this is not observed. Therefore the
symmetry of QCD is realized in the well-known Nambu-Goldstone mode [17,
18, 19], which states that the symmetry of the Lagrangian is not the same as
the symmetry of the vacuum. Furthermore, because the symmetry group is
broken down to its vectorial subgroup, there are in total eight massless Gold-
stone bosons introduced by means of the Goldstone theorem and these Gold-
stone bosons share the quantum numbers of the generators of the SU(3)A,
i.e. the Goldstone bosons form an octet of pseudoscalar mesons. However,
since the chiral symmetry is only approximate, the particles associated with
these Goldstone bosons are not massless, but still are significantly lighter
than typical hadrons, which have masses in the GeV range. In fact, there
are eight pseudoscalar mesons π±, π0, K±, K0, K̄0 and η which are all
lighter than the lowest-lying hadron that is not a Goldstone boson, i.e. the
ρ-resonance.

The explicit symmetry breaking due to the non-vanishing quark masses
is impairing the convergence of a perturbation theory around the chiral limit.
Especially comparing the two-flavor case to the three-flavor case, where in
the two-flavor case the QCD Lagrangian includes the u- and d-quark5 and in
the three-flavor case the s-quark is included as well. Due to the fact that the

5All heavier quarks are integrated out by means of the path integral formalism.
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mass of the s-quark is significantly larger than the masses of either u- or d-
quark, the additional Goldstone bosons of the SU(3)-flavor case, compared
to SU(2)-flavor, have also significantly larger masses. In the SU(3) case
the suppression factor of higher order terms of a perturbation theory is, in
a pessimistic estimate, approximately Mη/Mρ ≈ 0.71. For higher energies
the suppression factors become even worse and especially in the vicinity of
resonances ChPT breaks down, which is why the BSE, a non-perturbative
approach, will be used in this work.

The chirally symmetric Lagrangian of eq. (1.11) can be used to formu-
late an effective field theory that contains the Goldstone bosons as degrees
of freedom [1]. According to [20, 21], the eight Goldstone bosons in the
SU(3)-flavor case can be described by continous real functions φ(x) on
Minkowski space and there exists an isomorphic mapping between the quo-
tient (SU(3)V × SU(3)A)/SU(3)V and the Goldstone boson fields. But the
quotient can be uniquely characterized through a SU(3) matrix U(x), which
is invariant under local SU(3)V just as the vacuum. Therefore the effective
Lagrangian can be chosen to be a function of U(x), which can be expressed
in terms of the Goldstone boson fields:

U(x) = exp
(
iφ(x)
f

)
, (1.12)

where the Goldstone boson fields are collected in the hermitean matrix

φ = φaλa =
√

2


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 (1.13)

with the generators λa of the SU(3) Lie-algebra in the particle basis, and
the constant f will turn out to be the pion decay constant in the chiral limit.

Thus, an effective Lagrangian can be written down by implementing all
symmetries of the full QCD Lagrangian, i.e. Lorentz invariance and invari-
ance under C, P and T transformations as well as local chiral transformations
as e.g. applied to U(x). Furthermore, external sources can be included to
account e.g. for external vector fields, which will be introduced later in this
work.

To see how that works, consider first the QCD Lagrangian L0 and include
external sources as

LQCD = L0 + Lext

with
Lext = q̄

(
γµ(vµ + γ5aµ)− (s− iγ5p)

)
q,

where vµ, aµ, s and p are hermitian matrices in flavor space and they repre-
sent vector, axial-vector, scalar and pseudo-scalar external sources, respec-
tively. Moreover, vµ and aµ do not contain singlet components, i.e. their
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trace in flavor space vanishes. Note, that the quark mass term is included in
the scalar external field s = diag(mu,md,ms) + ..., where mu, md and ms

are the masses of the up, down and strange quark, respectively.
Now, the generating functional Z defined by

exp(iZ(v, a, s, p)) = 〈0|T exp
(
i

∫
d4x Lext(v, a, s, p)

)
|0〉

should be invariant under local SU(3)V × SU(3)A = SU(3)L × SU(3)R
transformations, since the Lagrangian LQCD should be invariant, just as L0.
This can be achieved by demanding particular transformation properties for
the external fields:

vµ + aµ → R(vµ + aµ)R† + iR∂µR
†,

vµ − aµ → L(vµ − aµ)L† + iL∂µL
†,

s→ RsL†,

p→ RpL†,

where L ∈ SU(3)L and R ∈ SU(3)R.
Then, the corresponding effective field theory with Goldstone bosons as

degrees of freedom can expressed as

exp(iZ(v, a, s, p)) =
∫
DU exp

(
i

∫
d4x Leff(U, v, a, s, p)

)
.

The measure DU of this path integral contains only Goldstone bosons and
thus this formulation is based on the assumption that the degrees of freedom
of the theory are the Goldstone bosons, which means that this approach is
only suited for the low-energy or long-range region of QCD where the in-
teraction through Goldstone bosons is dominant. High-energy degrees of
freedom have been integrated out, but their effect is still contained in the
local interactions of Leff.

Now that the groundwork has been done, the remainder of this section
will deal with the construction of the chiral effective Lagrangian.

The effective Lagrangian contains an infinite series of local couplings
which have to be invariant under the same symmetry groups as the QCD
Lagrangian. The basic building blocks are the matrix U containing the
Goldstone boson fields, the external fields vµ, aµ, s and p and derivatives of
those quantities. Of course, only a finite number of terms of the effective
Lagrangian can be used in calculations, therefore an ordering of these terms
has to occur, which is now widely known as power counting: As it turns
out, higher order terms are suppressed by factors of q/4πf , where 4πf is
about 1GeV in size which is approximately the size of the hadronic scale.
But the Goldstone boson momenta q in the low-energy regime of QCD are
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small compared to the hadronic scale and thus an expansion in powers of q
leads to a suppression of higher order terms. Correspondingly the effective
Lagrangian has to be expanded in derivatives. Omitting the external fields
for a moment, the effective Lagrangian can only contain an even number of
derivatives, due to the fact that the Lagrangian has to be a Lorentz scalar.
This leads to a constant term with no derivatives U †U = 1, which can simply
be omitted. The subsequent term contains two derivatives and reads

L(2)
eff =

f2

4
〈∂µU †∂µU〉,

where the brackets 〈· · · 〉 denote the trace in flavor space. The coefficient is
chosen such that the expansion of U leads to the standard kinetic term for
a real scalar field:

L(2)
eff =

1
2
∂µφ

a∂µφa +O(φ4).

Including the external fields again, the partial derivatives have to be replaced
by covariant derivatives

∇µU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ) (1.14)

in order to make the Lagrangian invariant under chiral transformations. As
∂µU is of order O(q), the same should be valid for the covariant derivative
∇µU and thus, for consistency, the fields vµ and aµ are also of order O(q).

A mass term can be included via the scalar external field s:

L(2)
eff =

f2

4
〈∇µU †∇µU〉+

f2

2
B0〈sU † + Us†〉,

where B0 is a constant related to the scalar quark condensate in the chiral
limit and the external field s can be set to the quark mass matrix s =
diag(mu,md,ms). But this implies that s is O(q2), which can be justified
by expanding the mass term in powers of Goldstone bosons [22]:

M2
π± = B0(mu +md),

M2
π0 = B0(mu +md) +O

(
(mu −md)2

ms − 1
2(mu +md)

)
,

M2
K± = B0(mu +ms),

M2
K0 = B0(md +ms),

M2
η =

1
3
B0(mu +md + 4ms) +O

(
(mu −md)2

ms − 1
2(mu +md)

)
.

Since on-shell Goldstone boson momenta satisfy q2 = M2
φ and because, in

leading order, squared meson masses are proportional to quark masses, the
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external field s is O(q2).

In this manner the higher order terms of the effective Lagrangian can be
derived, leading to an infinite series of local terms

Leff = L(2)
eff + L(4)

eff + L(6)
eff + . . . ,

which of course are more involved the higher the order. Moreover, expanding
the Leff in that way, leads to the necessity of an ordering for Feynman dia-
grams that are calculated with the vertices and propagators arising in Leff.
In particular, at leading order only the tree graphs of L(2)

eff have to be con-
sidered. At next-to-leading order, tree graphs and one-loop diagrams with
vertices from L(2)

eff as well as tree graphs with vertices from L(4)
eff have to be

considered, and so on. This ordering arises by virtue of the loop integrals,
which introduce additional orders of q in a diagram, and thus they have to
be included in the power counting scheme.

To summarize, the construction of a Lagrangian with Goldstone bosons
as degrees of freedom and implementing the symmetries of the underlying
theory leads to an infinite series of local terms which can be ordered by their
importance with an appropriate power counting scheme for the Goldstone
boson momenta.

1.5 Baryon chiral perturbation theory

The goal of this section is to introduce the baryon chiral perturbation theory
(BChPT) and in particular to construct an effective Lagrangian for the single
baryon sector, i.e. only one baryon is involved and therefore processes that
involve baryon-baryon interactions are not considered. To this end, the flavor
SU(3) ground-state octet of baryon fields can be introduced in analogy to
the meson fields:

B = Baλa =


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 , (1.15)

which accordingly transforms as an octet under the subgroup SU(3)V . Note,
that the corresponding antiparticles form an analogous octet. The corre-
sponding transformation law under SU(3)L × SU(3)R can be chosen as

B → KBK†,

where K depends on L ∈ SU(3)L, R ∈ SU(3)R and U . It can be derived
from the transformation property of a quantity often called u, which is the
positive square root of U , i.e. u =

√
U :

u→ RuK† = KuL†.
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It is then possible to define the chiral vielbein

uµ = iu†∇µUu†, (1.16)

which transforms, just like B, as uµ → KuµK
† and is of order O(q) due to

the covariant derivative in its definition. B and uµ can be used as building
blocks for the effective meson-baryon Lagrangian to arrive at [23, 24]:

L(1)
Bφ = 〈B̄(iγµDµ−m0)B〉−D

2
〈B̄γµγ5{uµ, B}〉−

F

2
〈B̄γµγ5[uµ, B]〉, (1.17)

where external fields are included within the covariant derivative

DµB = ∂µB + [Γµ, B],

Γµ =
1
2

(
u†[∂µ − i(vµ + aµ)]u+ u[∂µ − i(vµ − aµ)]u†

)
. (1.18)

The quantity m0 denotes the mass of the particles in the baryon octet in
the chiral limit and D and F are constants, whose sum is equal to the axial-
vector coupling gA in the chiral limit. Their values can be determined from
semileptonic baryon decays [26, 27] and throughout this work they are set
to

D = 0.8, F = 0.46.

The construction of a meson-baryon effective Lagrangian deserves some
comments on the power counting scheme. The leading order Lagrangian of
eq. (1.17) is of order O(q), due to the kinetic term. However, in contrast to
the Goldstone boson masses, the baryon mass m0 is not small and therefore
counted as O(1). Furthermore, the baryon field B and its adjoint B̄ are also
counted as O(1). Other counting rules are given by

DµB = O(1), B̄γ5B = O(q), B̄γµB = O(1), B̄γµγ5B = O(1).

In this spirit the next-to-leading order meson-baryon effective Lagrangian
can be constructed [24, 25]:

L(2)
Bφ = bD/F

〈
B̄
[
χ+, B

]
±
〉

+ b0
〈
B̄B

〉〈
χ+

〉
+ b1/2

〈
B̄
[
uµ,
[
uµ, B

]
∓

]〉
+ b3

〈
B̄
{
uµ,
{
uµ, B

}}〉
+ b4

〈
B̄B

〉〈
uµu

µ
〉

+ ib5/6

〈
B̄σµν

[[
uµ, uν

]
, B
]
∓

〉
+ ib7

〈
B̄σµνuµ

〉〈
uνB

〉
+
i b8/9

2m0

(〈
B̄γµ

[
uµ,
[
uν ,
[
Dν , B

]]
∓

]〉
+
〈
B̄γµ

[
Dν ,

[
uν ,
[
uµ, B

]]
∓

]〉)
+
i b10

2m0

(〈
B̄γµ

{
uµ,
{
uν ,
[
Dν , B

]}}〉
+
〈
B̄γµ

[
Dν ,

{
uν ,
{
uµ, B

}}]〉)
+
i b11

2m0

(
2
〈
B̄γµ

[
Dν , B

]〉〈
uµu

ν
〉

+
〈
B̄γµB

〉〈[
Dν , uµ

]
uν + uµ

[
Dν , u

ν
]〉)
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+ b12/13〈 B̄ σµν [F+
µν , B]± 〉 (1.19)

where

F+
µν = u†FLµνu+ uFRµνu

†,

FLµν = ∂µrν − ∂νrµ − i[rµ, rν ],

FRµν = ∂µlν − ∂ν lµ − i[lµ, lν ],

lµ = vµ − aµ,
rµ = vµ + aµ,

χ± = u†χu† ± uχ†u ,
χ = 2B0 s.

Here, the coefficients bi are called low-energy constants (LEC). They cannot
be determined from chiral symmetry itself, but must be obtained from ex-
periments. Note, that each term containing a pair of indices in the subscript
of the LECs is actually a sum of two terms: the first one containing the
left index and the upper sign of the respective commutator, and simarly the
second one containing the right index and the lower sign of the commutator.

The Lagrangian derived in the framework of baryon chiral perturbation
theory will be the basic Lagrangian used throughout this work and will be
used to derive almost all the interactions necessary for evaluating the η-
photoproduction amplitude later on.
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Chapter 2

Meson-baryon-scattering

For a calculation of a unitarized and gauge-invariant η-photoproduction am-
plitude, the construction of a unitarized Bφ-scattering amplitude, where B
is a baryon and φ is a meson, is inevitable. The minimal way to do so in the
context of ChPT, is to only use the leading-order Weinberg-Tomozawa cou-
pling, which will be the goal of the present chapter. Next-to-leading order
contact interactions could in principle be implemented [28], but they cause
severe computational difficulties. However, the inclusion of the Born terms
can not be considered either, since there is yet to find a way to solve the
Bethe-Salpeter equation (BSE) in that case.

2.1 Solution of the Bethe-Salpeter equation

The structure of a unitarized scattering amplitude for Bφ-scattering with
a contact-interaction is depicted in eq. (2.1) − wherein also the naming
conventions, which henceforth will be used, can be found:

Ba, p1

φi, q1

Bb, p2

φj , q2

= + , (2.1)

where the shaded circle denotes a set of internal lines that will be evaluated in
this section and the white square box denotes a vertex which will be specified
below. The superscripts a and i denote the types of the incoming baryon
and meson, respectively, and the superscripts j and b denote the types of
the outgoing baryon and meson, respectively. The momenta q1 and q2 are
associated with the mesons whereas p1 and p2 are the baryon momenta.

The starting point of this calculation is the Weinberg-Tomozawa vertex
stemming from the term containing the chiral connection Γµ of the lowest
order effective meson-baryon Lagrangian of eq. (1.17). Using the definition
of Γµ from eq. (1.18) and u =

√
U together with the definition of U from

27
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eq. (1.12), the chiral connection can be expanded in powers of meson fields
φ to the desired order of external meson legs:

Γµ =
1
2

(
u†∂µu+ u∂µu

†
)

=
1
2

([
1− iφ√

2f

]
∂µ

[
iφ√
2f
− φ2

4f2

]
+
[
1 +

iφ√
2f

]
∂µ

[
− iφ√

2f
− φ2

4f2

])
+O(φ4)

=
1

4f2
[φ, ∂µφ] +O(φ4),

where the external fields vµ and aµ have been set to zero for now. Inserting
Γµ into the Lagrangian gives

〈B̄ (iγµ [Γµ, B])〉 =
i

4f2
〈B̄
[[
φ, /∂φ

]
, B
]
〉

Then, using the pertinent Feynman rules yields

Ba, p1

φi, q1

Bb, p2

φj , q2

= i

(
i

4fifj
(−i/q1

)〈(λb)†[[(λj)†, λi], λa]〉

+
i

4fifj
(i/q2

)〈(λb)†[[λi, (λj)†], λa]〉
)
.

(2.2)

Since the two mesons are indistinguishable, the Feynman rules lead to two
terms, which represent that either of the mesons could be incoming or out-
going. The λi are the generators of the SU(3) Lie-Algebra in the particle
basis, appearing in the definitions of φ and B in eq. (1.13) and (1.15), respec-
tively. Furthermore, the fi can take on values corresponding to the meson
involved in the particular channel, i.e. fi has the possible values fπ, fη and
fK which are the decay-constants of the π, η and K, respectively. These
decay constants are set to be at physical values throughout this work:

fπ = 92.4MeV,
fη = 120.12MeV,
fK = 113MeV.

(2.3)

Note, that in the chiral limit fπ = fη = fK . Thus, taking different values for
the decay constants is equivalent to incorporating higher order terms, which,
in practice, can be absorbed into a redefinition of the potential.

Combining the terms of eq. (2.2) and defining the potential V as the
Weinberg-Tomozawa diagram multiplied by i gives

V bj,ai(/q2
, /q1

) = gbj,ai(/q1
+ /q2

),
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where
gbj,ai = − 1

4fjfi
〈(λb)†[[(λj)†, λi], λa]〉.

Finally, with the propagators

iSbj,aj(/p) =
iδbaδji

/p−ma

and

i∆bj,aj(p) =
iδbaδji

p2 −M2
j

,

the BSE for the meson-baryon scattering amplitude can be written down in
matrix form:

T (/q2
, /q1

; p) = V (/q2
, /q1

) +
∫

ddl

(2π)d
V (/q2

, /l)iS(/p− /l)∆(l)T (/l , /q1
; p). (2.4)

In principle, eq. (2.4) could be solved numerically, but it is by far more
convenient to use the analytic solution as was shown in [28, 31]:

T (/q2
,/q1

; p) = W (/q2
, /q1

; p)

+W (/q2
, /p−m; p)G(p)[1−W (/p−m, /p−m; p)G(p)]−1W (/p−m, /q1

; p),

where

W (/q2
, /q1

; p) = /q2
g

1
1 + IMg

+
1

1 + gIM
g/q1
− g 1

1 + IMg
IM (/p−m)

1
1 + gIM

g

and
mbj,ai = maδ

baδji (2.5)

is the baryon mass matrix, furthermore p = p1 + q1 is the total incoming
momentum. Since the former equations are matrix-like in channel space, the
’1’ has to be the unit matrix in channel space. Moreover, the loop integrals
are given by

Ibj,aiM =
∫

ddl

(2π)d
i∆bj,aj(l) (2.6)

and

Gbj,ai(p) =
∫

ddl

(2π)d
i[∆(l)S(/p− l)]bj,ai. (2.7)

Throughout this work, the divergent integrals will be regularized using the di-
mensional regularization. At first sight, it is not clear whether the additional
terms appearing in the renormalization scheme will alter the appearance of
T . But as described in [28], a shift in the integrals IM and G can always be
absorbed by modifying the interaction kernel V . Therefore, in practice these
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terms can simply be omitted. In contrast, using a perturbative renormal-
ization procedure and thus including counter terms in the Lagrangian would
spoil the solution of the BSE.

Now T can be reduced to 8 independent Dirac-structures:

T (/q2
, /q1

; p) = /q2/p/q1
T1(p) + /q2/q1

T2(p) + /p/q1
T3(p) + /q2/pT4(p)

+ /q1
T5(p) + /q2

T6(p) + /pT7(p) + T8(p).
(2.8)

The explicit form of the Ti structures and the loop integrals IM and G can
be found in appendices A and B, respectively.

2.2 Partial Wave Analysis

As an intermediate result, the partial waves of πN - scattering, more precisely
π0p - and π+n - scattering, will be presented in this section.

The first step in this approach is to restrict the channels. Any open chan-
nels, other than π0p and π+n, must have the same charge and strangeness
quantum numbers. In this work the only particles considered are the ground-
state octets of mesons and baryons. Hence, there are six channels in total:

(Bφ) = (pπ0, nπ+, pη,ΛK+,Σ0K+,Σ+K0). (2.9)

For calculating the partial waves, T from eq. (2.8) must be set on shell,
which can be achieved by the substitutions /q1

, /q2
→ /p −m, where m is the

diagonal baryon mass matrix whose diagonal entries are given by eq. (2.5).
Then T simplifies to

Ton = /pT
(1)
on + T (0)

on

where

T (1)
on = p2T1 +mT1m−mT2 − T2m− T3m−mT4 + T5 + T6 + T7

and

T (0)
on = p2(T2 + T3 + T4 − T1m−mT1) +mT2m− T5m−mT6 + T8

only depend on p2. Here, the abbreviation Ti = Ti(p) was used.

Now Ton can be rewritten in order to make the chiral ordering manifest:

Ton = /pT
(1)
on + T (0)

on = A+
1
2

(/q2
+ /q1

)B,

where /q1
and /q2

of course must be taken on-shell. Replacing again /q1
, /q2
→

/p−m, keeping in mind that this is a matrix equation and the ordering of m
and B matters, a comparison of coefficients yields

Aon = T (0)
on +

1
2

(mT (1)
on + T (1)

on m)
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and
Bon = T (1)

on .

The decomposition of the angular dependence of the amplitudes is given as
usual in the basis of the Legendre polynomials Pl:

Aon(s, z) =
1
2

∞∑
l=0

(2l + 1)Al(s)Pl(z),

where z = cos θ is the angular dependence of Aon and s = p2 is a Mandelstam
variable. Multiplying by Pm(z), integrating over z ∈ [−1, 1] and using the
orthogonality relation

∫ 1
−1 dzPl(z)Pm(z) = 2

2l+1δlm leads to

Al(s) =
∫ 1

−1
dzPl(z)Aon(s, z),

and equivalently

Bl(s) =
∫ 1

−1
dzPl(z)Bon(s, z).

However, since T (1)
on and T (0)

on have no angular dependence, neither have Aon
nor Bon. Hence, the only non-vanishing contributions come from

A0(s) = 2Aon(s)

and
B0(s) = 2Bon(s).

Theses results can now be applied to partial wave amplitudes (see [32], eq.
(A.3.7)) which read

−16π
√
sfl± =

√
Ecm +m

(
Al +

1
2

((
√
s−m)Bl +Bl(

√
s−m))

)√
Ecm +m

+
√
Ecm −m

(
−Al±1 +

1
2

((
√
s+m)Bl±1 +Bl±1(

√
s+m))

)√
Ecm −m,

(2.10)

where the center-of-mass energy Ecm is a matrix in channel space with com-
ponents

Ebj,aicm = δbaδji
√
q2
ai +m2

a

and

qai =

√
(s− (ma +Mi)2)(s− (ma −Mi)2)

2
√
s

(2.11)

are the components of the center-of-mass three-momentum for a baryon a
and a meson i. A partial wave amplitude such as fl± indicates that the total
angular momentum is j = l ± 1

2 .
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Being aware of that the only contribution comes fromA0 andB0, eq. (2.10)
reduces, for the l = 0 partial wave, to

−16π
√
sf0+ =

√
Ecm +m

(
A0 +

1
2
(
(
√
s−m)B0 +B0(

√
s−m)

))√
Ecm +m.

The other non-vanishing partial wave, f1−, will be omitted, since there
should be a considerable contribution from higher angular momentum waves,
in which case the current approach does not apply− theWeinberg-Tomozawa
vertex contributes only to the s-wave amplitude.

Finally, the T -Matrix for this decomposition reads

T0+ =
√
qcmf0+

√
qcm, (2.12)

where the components of qcm read

qbj,aicm = δbaδjiqai θ(s− (ma +Mi)2).

Note, that eq. (2.12) obtains this particular symmetric form due to its ma-
trix character in channel space.

For a comparison with other data of πN - scattering, the isospin chan-
nels 1

2 and 3
2 have to be extracted. The pertinent rules for Clebsch-Gordan

coefficients lead to

S11 = 2(T0+)π
+n − (T0+)π

0p,

S31 = 2(T0+)π
0p − (T0+)π

+n,
(2.13)

where (T0+)π
0p and (T0+)π

+n indicate the component in channel space of the
6 × 6-matrix T0+ representing π0p- and π+n-scattering, respectively. Fur-
thermore, S11 and S31 correspond to the common notation L2I,2J , where L
is the angular momentum, I is the isospin and J = L + S, where S is the
spin. In this step, the violation of the isospin-symmetry due to the inclusion
of higher orders in the amplitude is neglected. However, the isospin violation
through the hadron masses is still included.

Before fitting the partial waves to data, it has to be clarified which fit-
parametes should be used. Unlike in perturbation theory, in coupled-channel
models it is common practice to take different renormalization constants for
each channel. The argumentation behind that is, that by omitting all other
Feynman-diagrams, such as higher order terms, and by only iterating one
kind of a graph, there has to be a compensation for the loss of amplitudes.
Nevertheless, the isospin-symmetry forbids to take different renormalization



2.2. PARTIAL WAVE ANALYSIS 33

constants for one multiplet, resulting in a total of four independent renor-
malization constants µBφ for the six channels in eq. (2.9):

(pπ0, nπ+)→ µNπ

(pη)→ µpη

(ΛK+)→ µΛK

(Σ0K+,Σ+K0)→ µΣK

(2.14)

It is now possible to fit the model to the data from the SAID group
at GWU [33]. For all calculations throughout this work the masses of the
involved particles are taken from the particle data group [34] to be

mp = 0.9383GeV, Mπ0 = 0.1350GeV,
mn = 0.9396GeV, Mπ+ = 0.1396GeV,
mΛ = 1.1157GeV, Mη = 0.5475GeV,
mΣ0 = 1.1926GeV, MK+ = 0.4937GeV,
mΣ+ = 1.1894GeV, MK0 = 0.4976GeV,

(2.15)

which means that higher order contributions from ChPT are included in the
masses.
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Figure 2.1: S11 and S31 partial waves for a fit to data of the SAID group [33] from
1100MeV up to 1655MeV. The dashed lines represent the partial waves obtained by the
SAID group, the solid lines represent the best fit.

The best fit to both, the S11 and S31 partial waves, at energies between
1100MeV and 1655MeV is illustrated in fig 2.1. This particular energy region
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is not mandatory to the outcome of the fitting procedure, the region may be
varied by approximately 50MeV to 100MeV without changing the outcome
drastically. The obtained renormalization constants are1

log(µ(1)
Nπ/GeV) = −1.04479,

log(µ(1)
pη /GeV) = −1.03018,

log(µ(1)
ΛK/GeV) = −1.83275,

log(µ(1)
ΣK/GeV) = 1.59499,

(2.16)

where a logarithmic representation was chosen, as the renormalization con-
stants enter the loop integrals in that manner (see appendix B).

As can be seen, the model does not match well to the data. Neverthe-
less there is a qualitative agreement up to approximately 1550MeV, which
resembles somewhat the behaviour already found in [35].

To further analyze the model, the partial waves can be continued ana-
lytically to the second Riemann sheet. To do so, the correct analytic con-
tinuation of the two-point functions IMB, originating from the integral G in
eq. (2.7) (see appendix B), to their complex planes must be assured. When
crossing the branch cut in the complex s-plane from above, i.e. from positive
values of Re(s), in order to get to the second Riemann sheet, the logarithm
appearing in IMB collects an additional term due to its ambiguity as an
inverse function. For IMB this term manifests in precisely twice its imagi-
nary part (which is the discontinuity) just above the branch cut on the first
Riemann sheet. Hence, for a numeric computation the substitution

Ibj,aiMB → Ibj,aiMB −
iqai

4π
√
s
δbaδji θ(Re(s)− (ma +Mi)2) (2.17)

has to be made. The step function θ(Re(s)− (ma +Mi)2) enters the equa-
tion due to the differing two-particle thresholds of the various channels. The
step function also has a side effect: The Riemann sheets that are reached
by trespassing the real s-axis above the various two-particle thresholds are
effectively ’glued’ together, making it possible to visualize all sheets in one
image. Because of the step function, there will be artificial cuts in the plots
that are perpendicular to the real axis starting at each threshold.

In this energy regime, the S11 and S31 partial waves should reveal three
resonances on the second Riemann sheet: The S11(1535), the S11(1650) and
the S31(1620). However, in the sheets of the model amplitude, shown in
fig. 2.2, only one resonance at

(
√
sres)(1) ≈ [1590− 48i]MeV

1For later reference, the results of this fit are indexed with a ’(1)’.



2.2. PARTIAL WAVE ANALYSIS 35

2.0 2.2 2.4 2.6 2.8 3.0
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

Re@sD

Im
@s

D

2.0 2.2 2.4 2.6 2.8 3.0
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

Re@sD
Im

@s
D

Figure 2.2: Second Riemann sheets of |S11| (left) and |S31| (right) model partial waves for
a fit to the data of [33] from 1100MeV up to 1655MeV. Brighter means higher values.

appears in the S11 partial wave. This resonance seems to be the S11(1535),
although its real part is slightly larger than the analyses collected in [34]:

(
√
sres)data = [(1490...1530)− (45...125)i]MeV. (2.18)

Apparently, the model with only the Weinberg-Tomozawa coupling can not
generate the S11(1650) and the S31(1620) dynamically2. As a matter of fact,
the structure in the Re(S11) diagram in fig. 2.1 at about 1600MeV up to
1700MeV is a mere cusp effect, although it might look like a resonance. Thus,
the previous fitting attempt to the partial wave data is indeed inadequate.
A good agreement between model and data can only occur if the resonances
evident from the data also occur in the model. To avoid the futile fitting
of resonances which are not dynamically generated, the region of the input
data must be modified as to only contain the low-energy regime and the
S11(1535) resonance.

The diagrams in fig. 2.3 illustrate the simultaneous fit to the S11 data
from 1100MeV up to 1565MeV, in order to avoid the S11(1650), and the S31

data from 1100MeV up to 1400MeV avoiding the S31(1620). Again the exact
range of the fit is not mandatory to the outcome of the fitting procedure,
the energy range may be varied a little without a substantial change. The

2In [36] it is stated that by replacing the divergent integrals by finite constants and fit-
ting them to experimental data, it is possible to generate the S11(1535) and the S11(1650)
(besides an unphysical pole). However, this amounts to a total of 12 fitting parameters
(not including masses and decay constants), which may obscure the actual physical content
of the model.
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Figure 2.3: S11 and S31 partial waves for a fit to the data of [33] from 1100MeV up to
1565MeV for the S11 and from 1100MeV up to 1400MeV for the S31. The dashed lines
are the data, the solid lines are the best fit.

obtained renormalisation constants are

log(µ(2)
Nπ/GeV) = −1.43904,

log(µ(2)
pη /GeV) = −0.791079,

log(µ(2)
ΛK/GeV) = −1.81753,

log(µ(2)
ΣK/GeV) = 1.88101.

(2.19)

As can be seen, there is a slight improvement in the low-energy regime for
the S11 partial wave as well as in the shape of the imaginary part around the
S11(1535) resonance. The enhancement can be expressed via the quantity3

χ2(µ(i)) =
Ecm<1565MeV∑
Ecm>1100MeV

(data11(Ecm)− S11(Ecm, µ
(i)))2

S11(Ecm, µ(i))

+
Ecm<1400MeV∑
Ecm>1100MeV

(data31(Ecm)− S31(Ecm, µ
(i)))2

S31(Ecm, µ(i))
,

(2.20)

where µ(i) = (µ(i)
πN , µ

(i)
ηp , µ

(i)
KΛ, µ

(i)
KΣ) is an abbreviation for the renormalization

3This quantity was used to find the best fits, however with different summation con-
straints for the first fit.
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constants of eq. (2.16) and eq. (2.19). The data points at the center-of-
mass energy Ecm =

√
s are denoted by data11(Ecm) and data31(Ecm), and

lastly, the functions S11 and S31 are the model partial wave amplitudes
from eq. (2.13). The quantity of eq. (2.20) looks like the test statistic of
the common chi-square test. However, since there is neither an assumption
about errors nor their distribution, the χ2 of eq. (2.20) is a mere measure of
how close the model matches the data points.

Comparing the results of both fits yields

χ2(µ(2))
χ2(µ(1))

= 0.739291,

i.e. the fitting procedure avoiding the resonances, that are not dynamically
generated by the model, results in an improvement of about 26% in the
low-energy regime.
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Figure 2.4: Second Riemann sheets of |S11| (left) and |S31| (right) partial waves for a fit
to the data of [33] from 1100MeV up to 1565MeV for the S11 and from 1100MeV up to
1400MeV for the S31. Brighter means higher values.

Extracting the resonance position of the second Riemann sheets in fig. 2.4
yields

(
√
sres)(2) ≈ [1556− 35i]MeV, (2.21)

where the real part is closer to the estimate provided by the particle data
group [34] (see eq. (2.18)), but the imaginary part is now lower than the
estimate.
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2.3 Conclusion

It is possible to find an analytic solution for the Bethe-Salpeter equation us-
ing solely the Weinberg-Tomozawa vertex as the interaction kernel. However,
by this approach only the S11(1535) can be generated dynamically. Therefore
a complete fit to energies where the S31(1620) and the S11(1650) contribute
significantly is impossible4 and results in a displacement of the S11(1535)
position in the model. However, even by indentifying the resonances that
are not dynamically generated and by choosing the fitting region to avoid
these resonances, the prediction for the position of the S11(1535) could not
be improved.

Although the Weinberg-Tomozawa vertex has a significant contribution
to the S11 and S31 partial waves, it is not possible to achieve a decent fit to
the data from threshold to about the S11(1535), where the resonance appears
at the correct position. The problem lies within the interaction kernel itself,
i.e. the model for the scattering amplitude presented in this chapter is the
minimal way to describe πN -scattering in an off-shell coupled channel ap-
proach. An extension of the interaction kernel is possible and yields superior
results, but is also by far more involved. By incorporating the contact inter-
actions from the next-to-leading order Lagrangian, the low-energy behaviour
can be improved and the S11(1650) can be generated dynamically (see [28]).
A more severe problem lies within the generation of the S31(1620). There is
currently no model5 that produces such a resonance. It seems likely that it
has at most a small dynamically generated component, which means that it
has to be incorporated as an explicit field.

4As seen in fig. 2.1, it is possible that by coincidence a cusp effect mimics somewhat
the behaviour of a resonance.

5Including also the on-shell approaches.



Chapter 3

η-Photoproduction off the
proton

The goal of this chapter is the construction of a unitary and gauge-invariant
photoproduction amplitude off protons as well as a fit to data. The upcom-
ing treatment will proceed in analogy to previous work of Borasoy, Bruns,
Meißner and Nißler [5] on Kaon photo- and electroproduction. Therefore
the following evaluation leads to the η-electroproduction amplitude, where,
in the end, the photon virtuality will be taken to zero in order to retrieve
the photoproduction amplitude.

3.1 Construction of the amplitude

As described in sections 1.2 and 1.3 it is possible to construct a unitarized
and gauge-invariant amplitude. However, for the construction it is necessary
to find a unitary ’skeleton’-amplitude, to which the photon can be coupled
in a gauge-invariant manner. The virtual process p → Bφ is suited for
this purpose, since coupling of an incoming photon to this would render the
process to be γp→ Bφ, where B is a baryon and φ is a meson.

As seen in section 1.2, a ’skeleton’-amplitude Γ for the virtual process
p → Bφ that is unitary in the subspace of meson-baryon scattering has to
fulfill the equation

Γ(/q, /p) = V̂ (/q, /p) +
∫

ddl

(2π)d
T (/q, /l ; p)iS(/p− /l)∆(l)V̂ (/l , /p), (3.1)

or diagrammatically

Ba, p1 Bb, p2

φj , q

= + ,

39
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where p = p2+q is the total four-momentum and T is the solution of the BSE
for meson-baryon scattering from section 2.1. Note, that with this particular
ansatz crossing symmetry is violated. Furthermore,

V̂ (/q, /p) = Ba, p1 Bb, p2

φj , q

is a real kernel. This vertex comes from the chiral vielbein uµ of eq. (1.16)
appearing in the leading order meson-baryon Lagrangian of eq. (1.17). Ex-
panding uµ up to O(φ) gives

uµ = iu†∇µUu† = −
√

2
f
∂µφ+O(φ2).

Here, U is given by eq. (1.12), u =
√
U and the covariant derivative ∇µ is

given by eq. (1.14), where the external fields vµ and aµ are set to zero for
now. Inserting uµ into the last two terms on the right hand side of the chiral
Lagrangian of eq. (1.17) leads to

−D
2
〈B̄γµγ5 {uµ, B}〉 −

F

2
〈B̄γµγ5 [uµ, B]〉

= +
D√
2f
〈B̄γµγ5 {∂µφ,B}〉+

F√
2f
〈B̄γµγ5 [∂µφ,B]〉

The corresponding potential is then given by

V̂ bj,a(/q) = /qγ5ĝ
bj,a,

where

ĝbj,a = − D√
2fj
〈(λb)†{(λj)†, λa}〉 − F√

2fj
〈(λb)†[(λj)†, λa]〉.

Inserting V̂ and T into eq. (3.1) and replacing /l → (/p−m)− (/p−/l−m), the
integration simplifies via cancellations of the fermion propagator and yields

Γ(/q, /p) = /qγ5ĝ + T (/q, /p−m; p)[(/p−m)G(p)− IM ]γ5ĝ.

Collecting the Dirac-structures leads to

Γ(/q, /p) = [/q/pΓ1(p) + /qΓ2(p) + /pΓ3(p) + Γ4(p)]γ5. (3.2)

With the abbreviation Ti(p) = Ti, the Γi are given by

Γ1(p) = T1(p2H1 −mH0) + T2(H0 −mH1) + T4H0 + T6H1,

Γ2(p) = ĝ + p2T1(H0 −mH1) + T2(p2H1 −mH0) + p2T4H1 + T6H0,

Γ3(p) = T3(p2H1 −mH0) + T5(H0 −mH1) + T7H0 + T8H1,

Γ4(p) = p2T3(H0 −mH1) + T5(p2H1 −mH0) + p2T7H1 + T8H0,
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with

H1 = (G0(p)−mG1(p))ĝ,

H0 = (p2G1(p)−mG0(p)− IM )ĝ,

where IM is given by eq. (B.1), and G1 and G0 are given by eq. (B.5).
Before coupling the photon to the ’skeleton’-amplitude, the channels can

be restricted once again due to charge and strangeness conservation. Us-
ing only the groundstate meson and baryon octets, the process γp → MB
renders the possible intermediate and final particles to be the same as in
eq. (2.9). Note, that by choosing the initial baryon to be fixed as a proton,
the potential V̂ , and hence the amplitude Γ, become six-dimensional vectors
in channel-space.

Now the photon can be coupled to the ’skeleton’-amplitude. Gauge in-
variance can be obtained by taking all possible Feynman diagrams into ac-
count, where the photon couples to any external and internal lines as well as
to any vertices. The vertex rules for the latter can be derived from the chiral
Lagrangian by inclusion of a vector field, i.e. vµ 6= 0. However, the ampli-
tude for the process γp → Bφ must fulfill the partial unitarity condition as
well, i.e. the photoproduction amplitudeM obeys the equation

Mµ(/q, /k; p) =Mµ
0 (/q, /k; p) +

∫
ddl

(2π)d
T (/q, /l ; p) iS(/p− /l) ∆(l)Mµ

0 (/l , /k; p),

(3.3)
whereMµ

0 is a real kernel. Note that for the present case, the photoproduc-
tion amplitudeM is a six-dimensional vector in channel space and likewise
all of the following amplitudes.

In total, there are five different classes of photoproduction amplitudes
that are described by eq. (3.3), where each class obeys the partial unitarity
condition by itself. The first one consists of the diagrams:

Sµs =
Ba, p1

γ, k

Bb, p2

φj , q

+
Ba, p1

γ, k

Bb, p2

φj , q

,

where the kernel is the tree graph on the right hand side. The coupling of
the photon occurs via the common quantum electrodynamics vertex ieQγµ,
which is the coupling of vµ to the baryons and mesons. Here, Q is the charge
of the involved particle, which in this case is a proton1, s.t. Q = 1. Using
the pertinent Feynman rules, keeping in mind that Γ already contains the
tree graph, yields

Sµs = Γ(/q, /p) iS(/p) (ieγµ), (3.4)

1The notation for the inital baryon state Ba was left in the Feynman diagrams to
avoid confusion of the abbreviation ’p’ for protons with the total four-momentum. Keep
in mind, that from here on the initial state baryon is always a proton.
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where p = p1 + k = p2 + q is the total four-momentum.
The second class contains the u-channel diagram and a diagram where

the photon couples to an intermediate baryon:

Sµu+SµB =

γ, k

Ba, p1 Bb, p2

φj , q

+

γ, k

Ba, p1 Bb, p2

φj , q

.

Since Sµu is real in the physical region for the photoproduction process, it
can constitute the kernel for this class. Again, using Feynman rules leads to

Sµu = (ieQBγµ) iS(/p1
− /q) Γ(/q, /p1

), (3.5)

SµB = −i
∫

ddl

(2π)d
T (/q, /l ; p)S(/p− /l)∆(l)(eQBγµ)S(/p1

− /l)Γ(/l , /p1
), (3.6)

where the baryon charge matrix

QB = diag(1, 0, 1, 0, 0, 1)

in channel space was introduced to account for the various charges appearing
in the six channels in intermediate and final states.

Likewise, the third class consists of the t-channel diagram and a diagram
where the photon couples to an intermediate meson:

Sµt + SµM = Ba, p1

γ, k

Bb, p2

φj , q

+ Ba, p1

γ, k

Bb, p2

φj , q

,

where Sµt is also real in the physical region for the photoproduction process
and constitutes the kernel for this class. Using the vertex rule ieQM (2q−k)µ

from scalar quantum electrodynamics one arrives at

Sµt = (ieQM (2q − k)µ) i∆(q − k) Γ(/q − /k, /p1
), (3.7)

SµM = −i
∫

ddl

(2π)d
T (/q, /p− /l ; p)S(/l)∆(p− l)(eQM (2(p1 − l) + k)µ)

×∆(p1 − l)Γ(/p1
− /l , /p1

), (3.8)

where
QM = diag(0, 1, 0, 1, 1, 0)

is the meson charge matrix for intermediate and final state particles in chan-
nel space.
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The fourth class arises solely due to the ’Kroll-Ruderman’ (KR) interac-
tion contained in the meson-baryon chiral Lagrangian of eq. (1.17):

SµKR =
Ba, p1

γ, k

Bb, p2

φj , q

+
Ba, p1

γ, k

Bb, p2

φj , q

.

The vertex stems from the covariant derivative ∇µ in the chiral vielbein uµ
of eq. (1.16). Expanding uµ and keeping only terms including the vector field
vµ = −ieQqAµ, where Qq = 1

3 diag(2,−1,−1) is the quark charge matrix in
SU(3), and accounting for the terms with one meson leg amounts to

uµ = i u†∇µU u† = i

√
2 e
f

Aµ [Qq, φ] +O(φ2)

Inserting this into the last two terms of the chiral Lagrangian of eq. (1.17)
gives

− D

2
〈B̄γµγ5 {uµ, B}〉 −

F

2
〈B̄γµγ5 [uµ, B]〉

= −i eD√
2 f
〈B̄γµγ5 {Aµ [Qq, φ] , B}〉 − i e F√

2 f
〈B̄γµγ5 [Aµ [Qq, φ] , B]〉+O(φ2)

= −i eD√
2 f

Qφ〈B̄γµγ5Aµ {φ,B}〉 − i
e F√
2 f

Qφ〈B̄γµγ5Aµ [φ,B]〉+O(φ2),

where it was used that for a meson φ of a specified type, [Qq, φ] = Qφ φ is
valid, where Qφ is the charge of the meson φ. Note that Qφ is not a matrix,
but a mere number. However, evaluating the corresponding vertex rule for
all six channels, it is straightforward to see that the potential reads

V µ
KR = eQM ĝ γµγ5,

where QM is the meson charge matrix in channel space. Thus, the amplitude
for the fourth class is given by

SµKR = V µ
KR +

∫
ddl

(2π)d
T (/q, /l ; p) iS(/p− /l) ∆(l)V µ

KR. (3.9)

Finally, the Feynman diagrams for the fifth class emerge from the chiral
connection Γµ by the inclusion of an external vector field vµ, giving rise to
a B̄Bφφγ interaction:

SµWT1 + SµWT2 =

γ, k

Ba, p1 Bb, p2

φj , q

+

γ, k

Ba, p1 Bb, p2

φj , q

.
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The vertex rule can be obtained by expanding the Γµ with a vector field
vµ = −ieQqAµ up to O(φ2), which leads to

Γµ =
1
2

(
u†(∂µ − ivµ)u+ u(∂µ − ivµ)u†

)
= − i

2

([
1− iφ√

2f
− φ2

4f2

]
vµ

[
1 +

iφ√
2f
− φ2

4f2

]
+
[
1 +

iφ√
2f
− φ2

4f2

]
vµ

[
1− iφ√

2f
− φ2

4f2

])
+ . . .

=
i

4f2

(
−2φ vµ φ+ vµ φ

2 + φ2 vµ
)

+ . . .

=
e

4f2
Aµ [[Qq, φ] , φ] + . . . ,

where the ellipsis stands for higher order terms in φ and for terms that do
not contain the vector field vµ. Inserting this into the Lagrangian gives

〈B̄γµ i [Γµ, B]〉 =
ie

4f2
〈B̄γµAµ [ [ [Qq, φ] , φ] , B]〉

Since each of the φ can be either an incoming or an outgoing particle, the
corresponding vertex contains two terms that account for different charges of
the incoming and outgoing mesons. Therefore the potential in matrix form
reads

V µ
WTγ = eγµ{QM , g}.

Consequently, the amplitudes of the fifth class are given by

SµWT1 = V µ
WTγ

∫
ddl

(2π)d
iS(/p1

− /l) ∆(l) Γ(/l , /p1
), (3.10)

SµWT2 =
∫

dd l̃

(2π)d
T (/q, /̃l ; p) iS(/p− /̃l) ∆(l̃)SµWT1. (3.11)

As mentioned earlier, each of the five classes is unitary in the subspace
of meson-baryon scattering by itself. Due to the linearity of eq. (3.3) inM0,
the total photoproduction amplitude

Mµ = Sµs + Sµu + Sµt + SµB + SµM + SµKR + SµWT1 + SµWT2

also obeys eq. (3.3) and thus is unitary in that sense. However, only the
sum of the amplitudes of all five classes yields a gauge-invariant amplitude.
This can be seen from evaluating the contraction kµMµ while setting the
external particles on-shell. The explicit but lengthy evaluation is provided
in appendix C.

For the upcoming numeric computation it is convenient to decompose
the amplitudes into independent Lorentz-structures which is carried out in
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appendix D. The corresponding unpolarized differential cross sections can be
calculated by using the operator basis N µ

k commonly used for photoproduc-
tion processes and then evaluating the CGLN-amplitudes, which is provided
in appendix E.

3.2 Results

In this section the results of a fit to differential cross section data of the
above photoproduction model will be presented. The fitting parameters will
be the four renormalization constants µNπ, µpη, µΛK and µΣK appearing in
the six channels as described by eq. (2.14). Masses and decay constants are
again set to physical values, which are quantified by eq. (2.15) and eq. (2.3),
respectively.

Since the goal is to calculate the photoproduction amplitude, the photon
has to be real, i.e. k2 = 0. But due to k2 appearing in various denominators
(see appendix B) it is numerically not possible to simply set k2 to zero.
However, since there can not be a physical singularity at k2 = 0, because
the photoproduction process is a boundary case of electroproduction, the
limit k2 → 0− from below can be taken. In practice, k2 can be set to any
sufficiently small negative value.

As a measure of the goodness of the fit, the common

χ2/d.o.f. =
N

σN − δ
∑
E

1
n(E)

(∑
z

(data(E, z)− dσ
dΩ(E, z, µ))2

(err(E, z))2

)
will be used, where data(E, z) is the data point at energy E and angle
z = cos(θ) and err(E, z) is its corresponding error estimate. The prediction
of the differential cross section from the model is given by dσ

dΩ(E, z, µ) at
energy E, angle z and at specific values of the four renormalization con-
stants which are collectively called µ. Furthermore, n(E) is the number of
data points at energy E, σ is the number of distinct energies E, δ is the
number of degrees of freedom and N is the total number of data points, i.e.
N =

∑
E n(E).

For the upcoming fit, experimental differential cross section data for the
η-photoproduction off the proton is taken from McNicoll et al. [29]. The goal
was to find a fit that describes the data within the largest possible range,
where χ2/d.o.f. < 1 is fulfilled. This is achieved by the center-of-mass energy
range 1487.8MeV < Ecm < 1609.0MeV, which results in

log(µNπ/GeV) = −0.610537 ± 0.000355
0.000506 ,

log(µpη/GeV) = −0.511596 ± 0.056634
0.051671 ,

log(µΛK/GeV) = −5.11206 ± 0.40299
0.31200 ,

log(µΣK/GeV) = 1.84511 ± 0.00029
0.00041

(3.12)
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with
χ2/d.o.f. = 0.999645 . (3.13)

The errors were obtained by varying each parameter separately to higher
and lower values until χ2/d.o.f. increased by 1. Strictly speaking, the val-
ues found with that procedure are not errors, but rather a measure of how
sensitive the model amplitude is to a change in a certain parameter. From
eq. (3.12) it is clear that the parameter set has to be very fine tuned to
achieve the current fit.

Some of the differential cross section data including the fitted model
is shown in fig. 3.1 − the complete set is provided in appendix F. The
error bounds were illustrated by computing the envelope function of all cross
sections that are obtained when each parameter is varied separately to its
error boundaries. Then, the shaded area indicates maximum and minimum
values for the cross sections with separately varied parameters.
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Figure 3.1: Parts of the differential cross section data from McNicoll et al. [29] (red
symbols) with the corresponding best fit of the model evaluated in this chapter (black
line) at various center-of-mass energies Ecm chosen from within the fitting range. The
shaded area represents the errors.

Fig. 3.1 shows a good agreement between the experiment and the model,
even more than 100MeV away from threshold. The corresponding total cross
section is displayed in fig. 3.2. Of course, the total cross section matches in
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Figure 3.2: Total cross section data from McNicoll et al. [29] (red symbols) with the model
amplitude fitted to this differential cross section data (black line). The errors are given
by the shaded area and the vertical dashed lines represent the pη- and the ΛK-threshold.

the fitted energy range, but at higher energies the cross section exceeds the
data.

It is likely that the problem of the excess lies within the simple nature of
the interaction kernel used for this model. The Weinberg-Tomozawa vertex
generates only the S11(1535), which is said to saturate the cross section
close to threshold [30]. As will be seen in the next chapter, the Weinberg-
Tomozawa vertex, although generating a good portion of the S11(1535), is
likely not to include the complete information of the resonance in leading
order. However, the lacking parts can be compensated by an adequate choice
of the renormalization parameters, which in return leads to an excess at
higher energies.

As a last step, the prediction about the position of the S11(1535) shall
be extracted from the model. Thus, the analytic continuation to the second
Riemann sheet has to be calculated, as was done in section 2.2 for meson-
baryon scattering. The substitution for the two-point function can be read
off eq. (2.17). However, the photoproduction amplitude involves three-point
integrals whose analytic structure contains, similarly to the two-point func-
tions, branch cuts at each two-particle threshold along the positive real s
axis.

Hence, the second Riemann sheet is reached numerically by replacing
each two-point function as in eq. (2.17) and each three-point function IMBB

as

Ibj,aiMBB(s)→ Ibj,aiMBB(s) + Disc(Ibj,aiMBB(s)) θ(Re(s)− (mb +Mj)2) (3.14)
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and analogously for IMMB. The appearing two-point and three-point func-
tions and the discontinuities of the three-point functions are evaluated in
appendix B.

The function visualized in the following is the magnitude of the multipole
E0+ which can be obtained using the CGLN-amplitudes (see appendix E for
an explicit form of the CGLN-amplitudes):

E0+ =
∫ 1

−1
dz

(
1
2
P0(z)F1 −

1
2
P1(z)F2 +

1
6

(P0(z)− P2(z))F4

)
, (3.15)

where the Pl, with l = 0, 1, 2, are the Legendre polynomials; F1, F2 and F4

are CGLN-amplitudes and z = cos(θ) is the scattering angle.
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Figure 3.3: Visualization of the second Riemann sheets of |E0+|: higher values are brighter,
lower values are darker. (a) Composition of Riemann sheets, the cuts at Re(s) ≈ 2.2GeV2

and Re(s) ≈ 2.6GeV2 are due to the step functions θ in eq. (2.17) and eq. (3.14). (b)
Analytic continuation of the pη-sheet.

The resulting Riemann sheet is illustrated in fig. 3.3(a). As in section 2.2,
the step function θ in the analytic continuations of the two-point and three-
point functions amounts to cuts perpendicular to the real s-axis, starting
at each two-particle threshold, however, those cuts are artificial and are of
no physical relevance. The Riemann sheets in fig. 3.3(a) exhibit the only
two resonances in the vicinity of the η-photoproduction regime, of which the
one at lower Re(s) lies fairly close to the real axis on the nπ+-sheet. There
is no known particle that would result in such a resonance, it is merely an
artifact of the BSE on a sheet that is below the η-photoproduction threshold.
As mentioned in section 1.2, such artifacts are the sacrifice that have to be
made in order to obtain an exactly unitary amplitude. From a variation of
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the parameters it seems, that this resonance is a shadow pole, since it moves
in a correlated manner with the resonance on the pη-sheet. Shadow poles
are copies of a resonance that appear on other sheets and, unfortunately, it
is not exactly determinable where this pole comes from or what its nature
is. Therefore, this pole will be regarded as unphysical in the following.

To further illustrate the sheet of the η-photoproduction process in the
physical photoproduction energy region, the analytic continuation of the pη-
sheet can be calculated. As mentioned above, fig. 3.3(a) displays Riemann
sheets that are glued together at each threshold. This can be overcome by
redefining the prescriptions of the analytic continuation in the integrals of
eq. (2.17) and eq. (3.14) such that the step functions θ are set to the values
they would have when crossing the real s-axis between the pη-threshold and
the ΛK+-threshold, i.e.

θ(Re(s)− (mb +Mj)2)
pη-sheet
≡

{
1, for (mb +Mj)2 ≤ (mp +Mη)2

0, for (mb +Mj)2 > (mp +Mη)2
.

To be clear, the step functions have to be replaced by the values on the r.h.s.
independently of the value of Re(s). The resulting analytic continuation of
the pη-sheet is shown in fig. 3.3(b). The position of the resonance on this
sheet is √

sres ≈ [1527− 111i]MeV,

which lies within the boundaries determined by analyses collected in [34],
see eq. (2.18), and can therefore be identified with the S11(1535). As can
be seen in fig. 3.3(b) the physical region of the η-photoproduction process
seems unbiased by the shadow pole. And by observing that the fitting pro-
cedure correctly predicted the position of the S11(1535) it is evident that the
contribution from the shadow pole is, at most, marginal.

3.3 Conclusion

A gauge-invariant unitary model amplitude has been fitted to differential
cross section data of the η-photoproduction process off protons. The S11(1535)
could be generated dynamically from the interaction kernel containing the
Weinberg-Tomozawa vertex and its position lies within the error estimates
of experimental analyses from the particle data group [34]. There appeared
another resonance on the nπ+-sheet, which is an artifact of the construc-
tion of the model, but its presence leaves the physical region of the η-
photoproduction process apparently mostly unbiased and can therefore be
ignored.

As expected, the validity of the model amplitude is extensive due to
unitarization, which generates the S11(1535) dynamically, and due to the
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enforcement of gauge invariance in a quantum field theoretical manner. Nev-
ertheless, at energies beyond the ΛK-threshold the model exceeds the exper-
imental data. A possible explanation is that the interaction kernel does not
generate the ’whole’ S11(1535), which has to be compensated by an adequate
choice of the renormalization constants. But by choosing the renormaliza-
tion constants to broaden and heighten the resonance in order to fit the data,
the behavior of the model at higher energies will be elevated, too. However,
this will be inspected more thoroughly in the next chapter.



Chapter 4

Extension of the amplitude

The goal of this chapter is to evaluate the gauge-invariant and unitarized
photoproduction amplitude including the terms containing photon interac-
tions from the next-to-leading order (NLO) meson-baryon Lagrangian of
eq. (1.19). While doing so, one encounters some difficulties, which will be
discussed in the following.

4.1 Construction of the amplitude

The groundwork for the extended amplitude was done in the previous chap-
ter where the five unitarity classes were introduced which were unitary by
themselves but only all five classes together would yield a gauge invariant am-
plitude. The extension of the amplitude will be entering the total amplitude
in the same way: The new photon vertices that are going to be introduced
in this chapter will be implemented as to obey eq. (3.3) and hence the par-
tial unitarity requirement. Furthermore, gauge invariance has to be fulfilled
for the new classes separately, as the five classes from the previous chapter
already satisfy gauge invariance.

As before, the starting point will be the derivation of the vertex rules.
The terms of the NLO Lagrangian of eq. (1.19) that include the photon field
read

LγNLO = b12〈 B̄ σµν{F+
µν , B} 〉+ b13〈 B̄ σµν [F+

µν , B] 〉, (4.1)

where
F+
µν = uFLµνu

† + u†FRµνu (4.2)

with FL/Rµν = −eQqFµν in the present case and Fµν = ∂µAν − ∂νAµ is the
electromagnetic field strength tensor with the photon field Aµ. Furthermore,
Qq = 1

3diag(2,−1,−1) is the quark charge matrix and lastly the abbreviation
σµν = i

2 [γµ, γν ] was used.
From the terms of the NLO Lagrangian proportional to b12 and b13 ap-

pearing in eq. (4.1) a B̄Bγ-vertex rule can be derived. To this end, the u’s,

51
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that contain the meson fields, in F+
µν of eq. (4.2) have to be expanded up to

O(φ0) which leads to

F+
µν = −2eFµνQq +O(φ2).

Plugging F+
µν into eq. (4.1), the potential can be read off immediately

V µ
b = [/k, γµ] gb,

with
gb = 2e b12 〈 (λb)†{Qq, λa} 〉+ 2e b13 〈 (λb)†[Qq, λa] 〉.

With this vertex two unitarity classes can be constructed in close analogy
to the quantum electrodynamics vertex from the previous chapter. And by
construction, every unitarity class obeys eq. (3.3). The first class consists of
the diagrams

Sµb,s =
Ba, p1

γ, k

Bb, p2

φj , q

+
Ba, p1

γ, k

Bb, p2

φj , q

,

where the black square represents the NLO vertex derived above. Here, the
tree graph constitutes the kernel of eq. (3.3). Symbolically these graphs can
be written down as

Sµb,s = −Γ(/q, /p)S(/p)V
µ
b , (4.3)

where Γ is given in the previous chapter by eq. (3.2) and already contains
the tree graph.

The second class is given by

Sµb,u+Sµb,B =

γ, k

Ba, p1 Bb, p2

φj , q

+

γ, k

Ba, p1 Bb, p2

φj , q

,

where Sb,u is real in the physical region of the photoproduction process and
therefore can constitute the kernel of the integral equation. Using the perti-
nent Feynman rules leads to

Sµb,u = −V µ
b S(/p1

− /q) Γ(/q, /p1
), (4.4)

Sµb,B = −
∫

ddl

(2π)d
T (/q, /l ; p)S(/p− /l)∆(l)V µ

b S(/p1
− /l)Γ(/l , /p1

). (4.5)

For the next and last class the B̄Bφφγ vertex rule has to be derived from
eq. (4.1). For this purpose, the u’s in F+

µν of eq. (4.2) will be expanded to
O(φ2):

F+
µν = uFLµν u

† + u† FRµν u

= − eFµν [uQqu† + u†Qqu]

= O(φ0)− e

2f2
Fµν [φ, [Qq, φ]] +O(φ4),
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where terms of lower and higher order than O(φ2) were abbreviated by O(φ0)
andO(φ4), respectively. Inserting F+

µν into the Lagrangian L
γ
NLO of eq. (4.1),

the corresponding potential can be read off:

V̂ µ
b = [/k, γµ] ĝb,

where

ĝb = − e

2fifj

(
b12

〈
(λb)†

{[
[Qq, λi], (λj)†

]
+
[
[Qq, (λj)†], λi

]
, λa
}〉

+ b13

〈
(λb)†

[[
[Qq, λi], (λj)†

]
+
[
[Qq, (λj)†], λi

]
, λa
]〉)

.

With this vertex the last class can be evaluated. The representation via
Feynman diagrams is given by

Sµb,WT1 + Sµb,WT2 =

γ, k

Ba, p1 Bb, p2

φj , q

+

γ, k

Ba, p1 Bb, p2

φj , q

,

where Sµb,WT1 constitutes the real kernel of the corresponding integral equa-
tion of eq. (3.3). Symbolically the class can be expressed as

Sµb,WT1 = V̂ µ
b

∫
ddl

(2π)d
iS(/p1

− /l) ∆(l) Γ(/l , /p1
), (4.6)

Sµb,WT2 =
∫

dd l̃

(2π)d
T (/q, /̃l ; p) iS(/p− /̃l) ∆(l̃)SµWT1. (4.7)

The decompositions into independent Dirac structures of the above am-
plitudes are provided in appendix D. Furthermore, the total amplitude is
given by the sum of all eight unitarity classes, i.e. the sum of the five classes
described in section 3.1 and the three classes described above:

Mµ
b = Sµs + Sµu + Sµt + SµB + SµM + SµKR + SµWT1 + SµWT2

+ Sµb,s + Sµb,u + Sµb,B + Sµb,WT1 + Sµb,WT2.

As mentioned earlier, each class is unitary by itself, whereas gauge in-
variance for the first five classes described in section 3.1 is only achieved by
including all these five classes. In contrast, the three classes of this section
are all gauge-invariant by themselves. This can be proved trivially by noting
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that both the vertices, V µ
b and V̂ µ

b , are proportional to [/k, γµ], which van-
ishes upon a contraction with kµ. As in the previous chapter, the differential
cross section can be obtained via the CGLN-amplitudes (see appendix E).

The amplitudes considered in this section lead to complications which
have to be resolved before an actual numerical computation can be at-
tempted. These issues can be traced back to the potential V µ

b : In contrast
to the interaction from quantum electrodynamics, the V µ

b interaction aris-
ing from the NLO Lagrangian of eq. (4.1) is not diagonal in channel space.
Therefore the vertices

Λ

γ

Σ0 , Σ0

γ

Λ

are included in V µ
b , which means a photon may induce transitions between Λ

and Σ0 baryons. The consequences of this are that the loop appearing in the
amplitude Sb,B of eq. (4.5) consists of baryon propagators with potentially
unequal masses. Such a loop contains a three-point function with a tensor
structure in the numerator (see eq. (B.13) of appendix B) and it can be
decomposed into four Lorentz scalars (see eq. (B.14)) which, among others,
contain the tadpole integral IM of eq. (B.9). However, the off-diagonal
matrix elements of IM that arise due to the Λ ↔ Σ0 transitions in V µ

b , i.e.
the elements linking the ΛK+ and Σ0K+ channels, contain no information on
what baryon is involved in this particular transition, since IM only depends
on the meson mass of a particular channel. But the ΛK+ and Σ0K+ share
the same meson and hence it is not determinable whether the renormalization
constant µBφ, which sets the scale for a channel containing the baryon B
and the meson φ, is the renormalization constant of the channel ΛK+ or of
the channel Σ0K+. Therefore, in the following

µΛK ≡ µΣK

has to be assumed in order to avoid this complication.

Another implication follows directly from the unequal baryon masses in
the loop of Sµb,B. The decomposition of the three-point function with a tensor
structure in the numerator (again, see eq. (B.14) of appendix B) contains
baryon two-point functions [I(1)

BB(k2)]bj,ai defined by

kµ[I(1)
BB(k2)]bj,ai =

∫
ddl

(2π)d
iδji lµ

[(k − l)2 −m2
b ][l

2 −m2
a]
,

which can be evaluated to yield (compare to eq. B.12)

[I(1)
BB(k2)]bj,ai =

1
2k2

[
(k2 +m2

a −m2
b)I

bj,ai
BB (k2) + Ibj,aiB − Iai,bjB

]
.
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But considering the photoproduction limit k2 → 0−, it is easily seen that the
term proportional to m2

a−m2
b is infinite for the off-diagonal channels, where

mb 6= ma. Also, inspecting the tadpole integrals Ibj,aiB and Iai,bjB on the
r.h.s., which are defined in analogy to the meson tadpole integral of eq. B.9,
one finds that1:

lim
k2→0−

1
k2

(Ibj,aiB − Iai,bjB ) −→


+∞, for bj, ai = ΛK+,Σ0K+

−∞, for bj, ai = Σ0K+,ΛK+

0, else
.

The divergence of the off-diagonal elements of [I(1)
BB(k2)]bj,ai leads to a di-

vergence of the photoproduction amplitude, which is certainly unphysical,
as photoproduction is a boundary case of electroproduction for photons of
infinitely small virtuality k2.

To handle this, a new regularization scheme can be employed. Accord-
ing to Becher and Leutwyler [37], BChPT can be infrared regularized in a
Lorentz invariant manner while also preserving the power counting rules. In
this approach one identifies the infrared divergent parts of the integrals in
the chiral limit, which can then be absorbed into counter terms. Moreover,
all pure baryon integrals, like IB and IBB, are infrared finite due to the
non-vanishing baryon masses in the chiral limit and thus the pure baryon
integrals vanish based on the introduction of appropriate counter terms in
the Lagrangian. In this spirit, the pure baryon integrals shall be set to zero,
i.e.

Ibj,aiB ≡ 0, Ibj,aiBB ≡ 0.

However, in order to control the ultraviolet divergences of the meson tadpole
integral and all other ultraviolet divergent two-point functions, the usual
dimensional regularization scheme shall be employed for all other integrals.
Furthermore, as mentioned at the end of the section 1.2, the solution of the
BSE is spoiled by the introduction of counter terms in the Lagrangian, but
still, the BSE can be renormalized by modifying the interaction kernel of the
BSE appropriately as to absorb the upcoming divergences [28].

4.2 Results

For the numeric computation of the differential cross section, three renor-
malization constants µNπ, µpη and µK ≡ µΛK = µΣK , and in addition the

1The sign of the infinities depends on the actual definition of the baryon tadpole inte-
grals. In this case, the integral Ibj,aiB depends solely on the final state baryon mass mb, in
analogy to the definition of the meson tadpole of eq. (B.9). However, the baryon tadpole
could in principle be defined as depending on the initial state baryon mass ma, which
would result in slightly different formulae for the amplitudes.
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two LECs b12 and b13 will be used as degrees of freedom for the fitting pro-
cedure. As mentioned in the previous section, the integrals IBB and IB will
be set to zero as for the specific renormalization procedure that is used.

Unfortunately, the restriction µΛK = µΣK for the renormalization con-
stants is also a severe restriction for the photoproduction amplitude. As seen
in eq. (3.12) of chapter 3, the renormalization constants µΛK and µΣK are
quite different for a decent fit in the leading order approach. And since the
renormalization constants enter the photoproduction amplitude in a fairly
involved way, the LECs b12 and b13, which enter linearly, can not compensate
for that. As for the constraint on the renormalization constants and the par-
ticular renormalization scheme used in this chapter, this model can not be
compared directly to the leading order approach of chapter 3. Therefore the
current section is about a comparison of the amplitude including the NLO
potentials V µ

b and V̂ µ
b on the one hand, with the amplitude excluding the

NLO potentials on the other hand. Of course, the particular renormalization
scheme will be used in both cases.

The restrictions on the renormalization constants render a fitting proce-
dure, like the one for the leading order approach, useless. It is impossible to
find a set of renormalization constants and LECs that describe the differen-
tial cross section adequately for an energy range that includes the S11(1535)
completely. Hence, the following numerical computations are more of a qual-
itative comparison as to how the amplitude changes when including the NLO
potentials.

For the fitting procedure the same data points as for the leading order
approach from the previous chapter were taken from McNicoll et al. [29]
and thus the model was fitted to differential cross section data. The energy
range of the fit was chosen to be 1487.8MeV < Ecm < 1541.8MeV, i.e. from
threshold up to slightly above the peak of the S11(1535). As in the last
chapters, this particular fitting region is not mandatory for the outcome of
the fitting procedure, since the energy range can be varied in a reasonable
amount without changing the results significantly.

The fit results in two parameter sets:

log(µNLO
Nπ /GeV) = 0.597548 ± 0.626016

0.442811 ,

log(µNLO
pη /GeV) = −5.32771 ± 0.04240

0.03806 ,

log(µNLO
K /GeV) = −0.364032 ± 0.002398

0.002221 , (4.8)

bNLO
12 = 0.846209 ± 0.016447

0.016951 ,

bNLO
13 = −0.397511 ± 0.008924

0.009361
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and

log(µ0
Nπ/GeV) = 0.961197 ± 3.779000

0.368047 ,

log(µ0
pη/GeV) = −5.03681 ± 0.02805

0.02581 ,

log(µ0
K/GeV) = −0.402429 ± 0.002332

0.002062 , (4.9)

b012 = 0 ,

b013 = 0 ,

where the superscript ’NLO’ indicates inclusion of the NLO potentials, and
the subscript ’0’ indicates exclusion of the NLO potentials in the photopro-
duction amplitude. The values for the LECs bNLO

12 and bNLO
13 differ largely

from the values b12 ≈ 0.3 and b13 ≈ 0.1 that are obtained by perturbative ap-
proaches [38]. Though, there is no reason why resummation methods should
obtain the same parameters as perturbative approaches. In particular, in
an infinite series of Feynman diagrams the parameter set has to compensate
for the diagram topologies omitted in the series, or in other words, possible
contributions from other topologies are to some extent absorbed into the
parameter set.

The corresponding χ2/d.o.f. for the above parameter sets are given by[
χ2/d.o.f.

]NLO = 1.74466,[
χ2/d.o.f.

]0 = 3.44305.
(4.10)

The errors were obtained by the same method as previously: Each parameter
is varied separately to higher and lower values until χ2/d.o.f has increased
by 1. For both parameter sets, all values, apart from µNLO

Nπ and µ0
Nπ, are

very fine tuned. The influence of the Nπ renormalization constant is almost
nonexistent. In particular, it is possible to find similar χ2/d.o.f. for values
of the Nπ renormalization constant that are orders of magnitudes different
from the ones given above, if the other parameters are refitted. However,
since the model is very sensitive to the other parameters, they would only
change by a small fraction of their current values.

Fig. 4.1 shows a part of the differential cross section including the data
points from McNicoll et al. [29]. Fig. 4.2 and fig. 4.3 show the corresponding
error bands, which were, as previously, computed as the envelope function of
all differential cross sections that are obtained when each parameter is varied
separately to its error boundaries. The complete set of plots is provided in
appendix F. The differential cross section close to threshold is almost the
same for both sets of parameters, as can be seen best in fig. 4.1. But with
increasing center-of-mass energy the differential cross section of the param-
eter set without NLO potentials exhibits an ever-increasing slope which is
not consistent with the data points. In contrast, the differential cross section
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Figure 4.1: Parts of the differential cross section data from McNicoll et al. [29] (red
symbolds) including the best fit of the model with NLO potentials (solid blue line) and
the best fit of the model without NLO potentials (dashed black line).

with NLO potentials does not exhibit such a slope and fits the data better,
however, at energies beyond about 1530MeV the model lacks the curvature
of the data points.

Fig. 4.4 illustrates the corresponding total cross sections. They are almost
identical for both parameter sets and exhibit a reasonable agreement to the
data points about the peak position of the S11(1535). However, the width of
the resonance is underestimated by a large fraction. As it turns out, there is
no parameter set where the model generates the S11(1535) with the correct
width2.

The respective error bands of the total cross section are illustrated in
fig. 4.5 and fig. 4.6. The main observation is that a variation of the param-
eters changes mainly the height of the resonance, whereas the width remains
roughly the same. Also, those particular parameter sets seem to be fine
tuned for only the resonance region, but at higher energies those variations
have almost no impact.

To conclude this section, the respective amplitudes on the second Rie-
mann sheets shall be computed in the same manner as in the leading or-
der approach, i.e. analytically continuing the model amplitude by replacing
the two point functions as in eq. (2.17) and the three-point functions as in
eq. (3.14) and then calculating the multipole E0+ of eq. (3.15). The resulting
sheets of both parameter sets are shown in fig. 4.7. The model with and the

2This, of course, can not be proven, but extensive searches in parameter space, using
random walks and gradient methods, have not come to another conclusion.
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Figure 4.2: Parts of the differential cross section data from McNicoll et al. [29] (red
symbols) including the best fit of the model with NLO potentials (solid blue line) and its
error estimate (shaded area).
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Figure 4.3: Parts of the differential cross section data from McNicoll et al. [29] (red
symbols) including the best fit of the model without NLO potentials (dashed black line)
and its error estimate (shaded area).
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Figure 4.4: Total cross section data from McNicoll et al. [29] (red symbols) with the best
fit of the model with NLO potentials (solid blue line) and without NLO potentials (dashed
black line). The vertical dotted lines represent the pη- and the ΛK-threshold.
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Figure 4.5: Total cross section data from McNicoll et al. [29] (red symbols) with the best fit
of the model with NLO potentials (solid blue line) and its estimated error bands (shaded
area). The vertical dotted lines represent the pη- and the ΛK-threshold.

model without the NLO potentials exhibit two resonances each, of which one
is below the η-photoproduction threshold and should therefore be considered
as an artifact of the approach, for the same reasons that were explained in
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Figure 4.6: Total cross section data from McNicoll et al. [29] (red symbols) with the best
fit of the model without NLO potentials (solid blue line) and its estimated error bands
(shaded area). The vertical dotted lines represent the pη- and the ΛK-threshold.
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Figure 4.7: Second Riemann sheets of |E0+| (see eq. (3.15)) for the model with NLO
potentials (left) and the model without NLO potentials (right). Brighter means higher
values.

section 3.2. The other resonances, on the ηp-sheet, are positioned at

(
√
sres)

NLO ≈ [1539− 81i]MeV,

(
√
sres)

0 ≈ [1548− 71i]MeV.

Both imaginary parts lie within the error bands of the resonance position of
the S11(1535) in eq. (2.18) taken from [34]. However, the real parts of the
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resonance positions exceed the error bands of eq. (2.18), where the parameter
set including the NLO potentials is closer, which was to be expected as the
fit is better than without NLO potentials.

4.3 Conclusion

The extension of the amplitude with terms of the NLO meson-baryon La-
grangian including the photon field leads to severe restrictions for the renor-
malization constants and therefore leads to the necessity of the particular
renormalization scheme used in this chapter. However, these restrictions are
a necessary step for an extension of the model and can not be avoided in
future work on this topic. Thus, the evaluation of the extended model in this
chapter should be regarded as a first step in that direction and as a com-
parison of how the NLO photon interactions impact the η-photoproduction
cross section.

The difference between the amplitudes with and without NLO photon
interactions can be seen from the fit to the differential and total cross sec-
tions. In both cases, the dynamic generation of the S11(1535) results in a
qualitative agreement with the total cross section data and incorporating the
NLO photon interactions almost does not change the outcome of the total
cross section. However, the width of the resonance is underestimated and
the real part of the resonance position exceeds the boundaries of the values
given by the particle data group [34] in both cases. The main observation is
the difference in the differential cross section: The NLO photon interactions
lead to an improvement of the angular dependence of the differential cross
section, thus improving the overall χ2/d.o.f. greatly. From the construction
of the photoproduction amplitude it is clear that the resonance is generated
by the final state interaction, which is the meson-baryon scattering ampli-
tude. But the LECs b12 and b13 do not contribute to the scattering amplitude
and therefore the shape of the resonance in the total cross section should not
differ largely in the two cases. Hence, the main influence of the b12 and b13

should be to change the angular dependence.
It is not possible to find a set of parameters that results in the correct

width of the S11(1535) in the total cross section. Any fitting approaches to
higher energies result in a displacement of the resonance on the second Rie-
mann sheet, which gets worse the higher the upper boundary for the fitting
region. In section 3.3, it was mentioned that the excess of the total cross sec-
tion at center-of-mass energies higher than 1600MeV is due to modification of
the height and width of the resonance with the renormalization parameters.
However, the extended amplitude of this chapter contains one renormaliza-
tion constant less and the correct width can not be obtained anymore. As it
appears, the fourth renormalization constant in the leading order approach
can be used to mimic the behavior of an interaction kernel containing more
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interactions than a mere Weinberg-Tomozawa vertex. Therefore the lacking
width of the extended amplitude can only be overcome by including higher
order terms in the interaction kernel.

The slight displacement of the real part of the resonance position on the
second Riemann sheet is also an effect of the constraint on the renormal-
ization parameters, since in the leading order approach, the correct position
could be predicted. By an extension of the interaction kernel, the resonance
of the extended amplitude should also lie within the error bounds given
by [34].
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Chapter 5

Summary and Outlook

The calculation of the meson-baryon scattering amplitude of chapter 2 re-
veals that the solution of the BSE, with an interaction kernel containing only
the Weinberg-Tomozawa vertex, results in partial waves that are in a qual-
itative agreement with the partial waves deduced by the SAID group [33].
From the analytic continuation to the second Riemann sheets it becomes
clear that only the S11(1535) resonance can be generated dynamically, al-
though there should also be the S11(1650) and the S31(1620). However, the
S31(1620) is an example of a resonance that has, if at all, a very small dy-
namically generated component and therefore has to be included explicitly
in the Lagrangian.

The meson-baryon scattering amplitude was then used as the final state
interaction to calculate a gauge invariant η-photoproduction amplitude in
chapter 3 with interactions taken from the leading order meson-baryon chi-
ral Lagrangian and QED. This model shows remarkable agreement with the
differential cross section data from McNicoll et al. [29] up to energies more
than 120 MeV higher than the pη-threshold. The analytic continuation
demonstrates that the S11(1535) is generated dynamically by this approach
and lies within the error bounds given by the particle data group [34]. How-
ever, another pole appears below the η-photoproduction threshold, which is
most likely a shadow pole, i.e. a copy of the S11(1535) on another sheet
generated by the model. Such unphysical poles are a drawback of unita-
rization methods like the BSE and are generally ignored. Nevertheless, it is
possible that such a sub-threshold pole influences the physical regime of the
photoproduction process. But as the fit agrees well with the data and the
position of the S11(1535) could be predicted correctly, the influence of the
sub-threshold pole can at most be marginal. Furthermore, it is not possible
to generate other resonances from this photoproduction amplitude as the res-
onances are generated within the final state interaction. In this model, the
final state interaction is the meson-baryon scattering amplitude of chapter 2
which exhibits only the S11(1535).

65
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In chapter 4, the photon interactions of the NLO meson-baryon chiral
Lagrangian were taken into account. This resulted in difficulties which could
be resolved by setting the ΛK and the ΣK renormalization constants to be
equal and be employing a modified renormalization scheme. By reducing
the number of independent renormalization constants from four to three, the
photoproduction amplitude led to a much worse fit, and therefore chapter 4
was a direct comparison of the impact of the NLO photon interactions on
the outcome of the cross sections and the resonances. The main difference
can be seen in the differential cross section which was improved by the NLO
potentials. The total cross section was almost the same and the dynamically
generated S11(1535) did not change its position significantly. Thus including
the NLO photon interactions leads only to a better overall fit and extends
the validity of the model but does not contribute on a qualitative level.

It is worth mentioning that any extension of a photoproduction amplitude
to the next-to-leading order will suffer from the difficulties seen in chapter 4
and thus discarding a renormalization constant can not be avoided by ap-
proaches as in this work. Therefore, this extended amplitude is a first step
when analyzing next-to-leading order photoproduction amplitudes.

Future work is based on an extension of the interaction kernel of the BSE
as well as adding higher order contributions to the photon interactions. The
main concern is to enhance the final state interaction of the photoproduc-
tion amplitude which is the same as the calculation of the meson-baryon
scattering amplitude, since it is clear that the dynamic generation of the
S11(1650) depends on the choice of the interaction kernel. A first approach
was made in [28], where the S11(1650) was successfully generated with a
model that incorporates leading order and next-to-leading order contact in-
teractions from the meson-baryon chiral Lagrangian. However, the Born
terms had to be omitted, because it is not yet possible to solve the BSE
with an interaction kernel containing these terms. The difficulty lies within
the u-channel diagrams, since an iteration of the BSE leads to a series of
overlapping four-point functions and it is not clear how these can be reduced
to make them computable. In contrast, the s-channel Born graph leads
only to a renormalization of the various baryon masses for the meson-baryon
scattering amplitude. But for the photoproduction amplitude, the s-channel
Born graph results in complications with the gauge-invariance, since the self-
energies are linked to the electromagnetic baryon form factors by means of
a Ward-Takahashi identity.

Thus, as a next step, the calculation of a photoproduction amplitude with
a full incorporation of all leading order and next-to-leading order contact
interactions would be reasonable.



Acknowledgements

I want to thank Maxim Mai and Peter Bruns for their outstanding support
during this diploma thesis. For their patience in answering all of my ques-
tions, for proofreading anything that came to my mind and for discussions
on any topic I can imagine. Moreover, I would like thank Ulf-G. Meißner for
giving me the opportunity to work on this interesting topic and I would like
to thank Akaki Rusetsky for reading my diploma thesis.

67



68 CHAPTER 5. SUMMARY AND OUTLOOK



Appendix A

The solution of the BSE

As proven in [31], the BSE

T (/q2
, /q1

; p) = V (/q2
, /q1

) +
∫

ddl

(2π)d
V (/q2

, /l)iS(/p− /l)∆(l)T (/l , /q1
; p),

with
V (/q2

, /q1
) = gbj,ai(/q1

+ /q2
),

is solved by an amplitude of the form

T (/q2
,/q1

; p) = W (/q2
, /q1

; p)

+W (/q2
, /p−m; p)G(p)[1−W (/p−m, /p−m; p)G(p)]−1W (/p−m, /q1

; p),
(A.1)

with

W (/q2
, /q1

; p) = /q2
g

1
1 + IMg

+
1

1 + gIM
g/q1
− g 1

1 + IMg
IM (/p−m)

1
1 + gIM

g.

(A.2)
For any further calculations it is necessary to decompose the solution into
independent Dirac structures. To do so, the constituents of eq. (A.1), i.e. the
functions G and W , have to be decomposed first. The integral G contains
the structures

G(p) = G1(p)/p+G0(p),

where the Lorentz scalars G1(p) and G0(p) can be read off eq. (B.5) in
appendix B. Similarly the function W (/p−m, /p−m; p) becomes

W (/p−m, /p−m; p) = W1(p)/p+W0(p),

where

W1(p) = g
2 + IMg

(1 + IMg)2
,

W0(p) = g
1

1 + IMg
(IMm)

1
1 + gIM

g −mg 1
1 + IMg

− 1
1 + gIM

gm
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can be read off eq. (A.2) by using the substitutions /q1
, /q2
→ /p−m.

The crucial point of the decomposition is the inverse, appearing in eq. (A.1),
where Dirac structures appear in the denominator. SinceW (/p−m, /p−m; p)
and G(p) only consist of one term proportional to /p and a Lorentz scalar,
G(p)[1 −W (/p −m, /p −m; p)G(p)]−1 can also only contain these two Dirac
structures. Hence it can be rewritten as

G(p)[1−W (/p−m, /p−m; p)G(p)]−1 = Ω1(p)/p+ Ω0(p),

with the Lorentz scalars

Ω1 = G0(p)
[
p2 W̃1 − W̃0 W̃

−1
1 W̃0

]−1

−G1(p) W̃−1
1 W̃0

[
p2 W̃1 − W̃0 W̃

−1
1 W̃0

]−1
,

Ω0 = p2G1(p)
[
p2 W̃1 − W̃0 W̃

−1
1 W̃0

]−1

−G0(p) W̃−1
1 W̃0

[
p2 W̃1 − W̃0 W̃

−1
1 W̃0

]−1
,

where

W̃1 = −W1(p)G0(p)−W0(p)G1(p)

W̃0 = 1− p2W1(p)G1(p)−W0(p)G0(p).

Inserting this into eq. (A.1) and collecting Dirac structures amounts to the
decomposition

T (/q2
, /q1

; p) = /q2 /p /q1
T1(p) + /q2 /q1

T2(p) + /p /q1
T3(p) + /q2 /p T4(p)

+ /q1
T5(p) + /q2

T6(p) + /p T7(p) + T8(p),

with eight scalar coefficients:

T1(p) = L1 Ω1(p)L1,

T2(p) = L1 Ω0(p)L1,

T3(p) = (L2 Ω0(p) + L3 Ω1(p))L1,

T4(p) = T T3 (p),

T5(p) =
(
p2 L2 Ω1(p) + L3 Ω0(p)

)
L1 + L1,

T6(p) = T T5 (p),

T7(p) =
(
p2 L2 Ω1(p) + L3 Ω0(p)

)
L2

+ (L2 Ω0(p) + L3 Ω1(p))LT3 − g IML2,

T8(p) = p2
(
L2 Ω0(p)L2 + L3 Ω1(p)L2 + L2 Ω1(p)LT3

)
+ L3 Ω0(p)LT3 − L3 IM g,
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where

L1 = g
1

1 + IMg
,

L2 =
1

(1 + gIM )2
g,

L3 = − 1
1 + gIM

gm
1

1 + IMg

and the superscript ’T ’ denotes transposition in channel space.
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Appendix B

Loop integrals

This appendix is dedicated to the various loop integrals that appear through-
out this work. Section B.1 provides the integrals necessary for the meson-
baryon-scattering amplitude of chapter 2 and the leading order calculation of
the η-photoproduction amplitude of chapter 3, whereas section B.2 provides
the integrals for the calculation of the extended amplitude of chapter 4. All
integrals are given component-by-component − the corresponding matrix
form in channel space can then be deduced straightforwardly. Furthermore,
no summation over multiple channel indices is understood.

B.1 Integrals for the leading order amplitude

Within this section all integrals that are necessary for the leading order
calculation of chapter 3 will be evaluated. To this end, the dimensional
regularization scheme will be used, where d denotes the dimension. All
integrals will dependent on d, which is only set to its physical value d → 4
at the end of the calculation of amplitudes.

First of all, the meson tadpole integral that appeared in eq. (2.6) is given
by

Ibj,aiM =
∫

ddl

(2π)d
iδbaδji

l2 −M2
j + iε

= δbaδji
(

2M2
j λ̄+

1
8π2

M2
j log

(
Mj

µbj

))
,

(B.1)
where the superscripts b, j and a, i denote the final and initial baryon and
meson types, respectively. Moreover, Mj is the mass of the meson of type j,
µbj is the scale of the dimensional regularization scheme, ε is a small positive
quantity and

λ̄ =
µd−4

16π2

(
1

d− 4
− 1

2
(log(4π)− γE + 1)

)
, (B.2)

where γE ≈ 0.577 is the Euler-Mascheroni constant. Terms of O(d− 4) were
neglected, since they vanish anyway in the limit d → 4. Throughout this

73



74 APPENDIX B. LOOP INTEGRALS

work, the MS renormalization scheme will be used, i.e. all terms propor-
tional to λ̄ will be dropped. Note, that the renormalization constant µbj
varies amongst the channels, i.e. there are four independent renormalization
constants (see the explanation above eq. (2.14) in section 2.2).

The corresponding baryon tadpole integral can be deduced by replacing
the meson mass Mj by a mass ma of a baryon of type a:

Ibj,aiB = Ibj,aiM

∣∣∣∣
Mj→ma

.

The next integral is the two-point function with one meson and one
baryon. Here and in the remainder the iε′s in the denominator will be
omitted for brevity:

Ibj,aiMB (p2) =
∫

ddl

(2π)d
iδbaδji

[(p− l)2 −m2
b ][l

2 −M2
j ]

=
δbaδji

16π2

[
−1 + log

(
m2
b

µ2
bj

)
+
M2
j −m2

b + p2

2p2
log

(
M2
j

m2
b

)

−4|q|bj,ai√
p2

artanh

(
2|q|bj,ai

√
p2

(mb +Mj)2 − p2

)]
,

where

|q|bj,ai =

√
(p2 − (mb +Mj)2)(p2 − (mb −Mj)2)

2
√
p2

is the center-of-mass three-momentum of a system with a center-of-mass
energy of

√
p2 consisting of two particles with masses mb and Mj . Consecu-

tively, the baryon-baryon as well as the meson-meson two-point function can
be obtained by replacing

Ibj,aiBB (p2) = Ibj,aiMB (p2)
∣∣∣∣
Mj→mb

, Ibj,aiMM (p2) = Ibj,aiMB (p2)
∣∣∣∣
mb→Mj

.

Up to now, everything could be calculated analytically, but the three-
point function with one meson and two baryons

Ibj,aiMBB(p2
1, p

2) =
∫

ddl

(2π)d
iδbaδji

[(p− l)2 −m2
b ][(p1 − l)2 −m2

b ][l
2 −M2

j ]
(B.3)

must be calculated numerically, as for which the use of dispersion relations
renders useful. In the complex p2-plane, IMBB exhibits cuts along the real
p2 axis, starting at the corresponding threshold of the channel and going
to positive infinity. The exclusive knowledge of the discontinuity of these
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cuts is sufficient to reconstruct the real part of IMBB, and hence the com-
plete function IMBB. With the pertinent Cutkosky rules (see e.g. [11]) the
discontinuity of IMBB can be calculated directly:

Disc(Ibj,aiMBB(p2
1, p

2)) = − iδbaδji

16π|k|
√
p2

log
(
Hbj,ai + 2|k||q|bj,ai

Hbj,ai − 2|k||q|bj,ai

)
, (B.4)

where

|k| =
√

(k2)2 − 2k2(p2
1 + p2) + (p2

1 − p2)2

2
√
p2

, k = p− p1

and for reasons of a clear arrangement the function

Hbj,ai =− 1
2p2

√
(k2 − p2

1 + p2)2
(
−M2

j +m2
b + p2

)2

+
√

(k2 − p2
1 + p2)2 −m2

a +m2
b + p2

1 − p2

was introduced1. The corresponding dispersion relation for the numeric com-
putation reads

Ibj,aiMBB(p2
1, p

2) = − 1
2πi

∫ ∞
(mb+Mj)2

ds′
Disc( Ibj,aiMBB(p2

1, s
′) )

p2 − s′
,

in which the analytic properties of IMBB are manifested.
The three-point function IMMB with two mesons and one baryon can be

deduced from IMBB by interchanging the meson and baryon masses:

Ibj,aiMMB(p2
1, p

2) = Ibj,aiMBB(p2
1, p

2)
∣∣∣∣
mb←→Mj

.

Up to now, all basic integrals were evaluated. However, in the course
of the calculation of the photoproduction amplitude, various loop integrals
with vector or tensor structures in the numerators appear. The simplest one
is the two-point function IMB with a lµ in the numerator. By using that
such an integral can only be proportional to the vector, appearing in the
integral, times a Lorentz scalar, one arrives at∫

ddl

(2π)d
iδbaδji lµ

[(p− l)2 −m2
b ][l

2 −M2
j ]

= pµ[I(1)
MB(p2)]bj,ai.

1For later convenience, H was defined for generally differing initial and final baryon
masses ma and mb, respectively. However, in the present case, due to the δba in eq. (B.4),
those masses are the same, i.e. ma = mb.
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Contracting both sides of the equation with pµ and completing the square
on the l.h.s in order to cancel the propagators leads to

[I(1)
MB(p2)]bj,ai =

1
2p2

[
(p2 +M2

j −m2
b)I

bj,ai
MB (p2) + Ibj,aiB − Ibj,aiM

]
.

The above results can be combined to solve the integral

Gbj,ai(p2) =
∫

ddl

(2π)d
iδbaδji

[(/p− /l)−mb][l2 −M2
j ]

that appeared in eq. (2.7). Expanding the fraction of the fermion propagator
leads to two independent Dirac structures that can be expressed as

Gbj,ai(p2) = /pG1(p2) +G0(p2)

=
/p

2p2

[
(p2 −M2

j +m2
b)I

bj,ai
MB (p2) + Ibj,aiM − Ibj,aiB

]
+mb I

bj,ai
MB (p2).

(B.5)

The three-point functions with vector and tensor structures are more
advanced, since there have to be considered more possible Dirac structures.
The three-point function with two baryons and one meson with a vector
structure in the numerator can be decomposed as∫

ddl

(2π)d
iδbaδji lµ

[(p− l)2 −m2
b ][(p1 − l)2 −m2

b ][l
2 −M2

j ]
= Abj,ai(p2

1, p
2) (p1 + p)µ

+Bbj,ai(p2
1, p

2) (p1 − p)µ.

Contracting both sides of the equation with either (p1 + p)µ and (p1 − p)µ
and completing the squares in order to cancel the propagators leads to two
independent equations which can be solved for A and B yielding

Abj,ai(p2
1, p

2) =
1

2D

[(
4[M̄2]bj,ai − ∆p4

k2

)
Ibj,aiMBB(p2

1, p
2) + 2Ibj,aiBB (k2)

−
(

1− ∆p2

k2

)
Ibj,aiMB (p2

1)−
(

1 +
∆p2

k2

)
Ibj,aiMB (p2)

]
,

Bbj,ai(p2
1, p

2) =
∆p2

2k2D

[
(4[M̄2]bj,ai + k2 − 4p̄2)Ibj,aiMBB(p2

1, p
2) + 2Ibj,aiBB (k2)

−
(

1− 4p̄− k2

∆p2

)
Ibj,aiMB (p2

1)−
(

1 +
4p̄− k2

∆p2

)
Ibj,aiMB (p2)

]
,
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where

p̄2 =
1
2

(p2
1 + p2),

[M̄2]bj,ai =
1
2

(p̄2 +M2
j −m2

b) δ
baδji,

∆p2 = p2 − p2
1,

∆p4 = (∆p2)2,

D = 4p̄2 − k2 − ∆p4

k2
.

Analogously the three-point function with a tensor structure in the nu-
merator can be calculated. Its decomposition reads

∫
ddl

(2π)d
iδbaδji lµlν

[(p− l)2 −m2
b ][(p1 − l)2 −m2

a][l2 −M2
j ]

= Cbj,ai1 (p2
1, p

2) gµν

+ Cbj,ai2 (p2
1, p

2) (p1 + p)µ(p1 + p)ν

+ Cbj,ai3 (p2
1, p

2) (p1 − p)µ(p1 − p)ν

+ Cbj,ai4 (p2
1, p

2) ((p1 + p)µ(p1 − p)ν + (p1 − p)µ(p1 + p)ν).

Again, contracting separately with each Lorentz structure on the r.h.s and
thus cancelling the propagators leads to four equations which can be solved
for the coefficients:

Cbj,ai1 (p2
1, p

2) =
1

d− 2

[
M2
j I

bj,ai
MBB(p2

1, p
2) +

1
2
Ibj,aiBB (k2)

− 2[M̄2]bj,aiAbj,ai(p2
1, p

2) +
∆p2

2
Bbj,ai(p2

1, p
2)
]
, (B.6)

Cbj,ai2 (p2
1, p

2) =
1

k2D

[
k2(M2

j I
bj,ai
MBB(p2

1, p
2) + Ibj,aiBB (k2))

+
∆p2

2
(k2Bbj,ai(p2

1, p
2)−∆p2Abj,ai(p2

1, p
2))

− k2

4
([I(1)

MB(p2
1)]bj,ai + [I(1)

MB(p2)]bj,ai)

+
∆p2

4
([I(1)

MB(p2
1)]bj,ai − [I(1)

MB(p2)]bj,ai)

− (d− 1)k2Cbj,ai1 (p2
1, p

2)
]
,
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Cbj,ai3 (p2
1, p

2) =
1

k2D

[
(4p̄− k2)(M2

j I
bj,ai
MBB(p2

1, p
2) +

1
2
Ibj,aiBB (k2))

− 2[M̄2]bj,ai((4p̄2 − k2)Abj,ai(p2
1, p

2)−∆p2Bbj,ai(p2
1, p

2))

+
1
4

(4p̄2 −∆p2 − k2)[I(1)
MB(p2

1)]bj,ai

+
1
4

(4p̄2 + ∆p2 − k2)[I(1)
MB(p2)]bj,ai

− (d− 1)(4p̄2 − k2)Cbj,ai1 (p2
1, p

2)
]
,

Cbj,ai4 (p2
1, p

2) =
1

k2D

[
∆p2(M2

j I
bj,ai
MBB(p2

1, p
2) + Ibj,aiBB (k2))

− ∆p2

2
((4p̄2 − k2)Abj,ai(p2

1, p
2 −∆p2Bbj,ai(p2

1, p
2))

+
1
4

(4p̄2 −∆p2 − k2)[I(1)
MB(p2

1)]bj,ai

− 1
4

(4p̄2 + ∆p2 − k2)[I(1)
MB(p2)]bj,ai

− (d− 1)∆p2Cbj,ai1 (p2
1, p

2)
]
, (B.7)

where d is the dimension stemming from the regularization scheme. Since
this loop integral is divergent, the coefficient C1 of eq. (B.6) picks up an
additional term in the limit d → 4. This can be quantified by assuming λ̄
of eq. (B.2) was not omitted, in which case the additional appearance of the
dimension d in the coefficient C1 leads to a different expansion in powers of
d − 4. To quantify the difference, C1(d = 4) shall be the function obtained
by setting naively d = 4 in eq. (B.6). Then, the limit d → 4 leads to the
following additional constants:

Cbj,ai1 → Cbj,ai1 (d = 4)− δbaδji 1
64π2

,

(d− 1)Cbj,ai1 → 3Cbj,ai1 (d = 4)− δbaδji 1
64π2

,

(B.8)

which are all that are needed in the leading order approach.
As mentioned earlier, the results for the case of a three-point function

with two mesons and one baryon can be deduced by interchanging the meson
and baryon masses. The corresponding coefficients will be tagged by a tilde:

Ãbj,ai(p2
1, p

2) = Abj,ai(p2
1, p

2)
∣∣∣∣
mb↔Mj

,

B̃bj,ai(p2
1, p

2) = Bbj,ai(p2
1, p

2)
∣∣∣∣
mb↔Mj

,

C̃bj,aik (p2
1, p

2) = Cbj,aik (p2
1, p

2)
∣∣∣∣
mb↔Mj

,
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where k = 1, 2, 3, 4.

The above results can be used to decompose two important loop integrals
that appear during the evaluation of the leading order photoproduction am-
plitude. The first one reads∫

ddl

(2π)d
δbaδji

1
(/p− /l)−mb

ieQbj,aiB γµ
1

(/p1
− /l)−mb

1
l2 −M2

j

= γµF bj,ai1 (p2
1, p

2) + /pγ
µF bj,ai2 (p2

1, p
2) + γµ/p1

F bj,ai3 (p2
1, p

2)

+ /pγ
µ
/p1
F bj,ai4 (p2

1, p
2) + pµF bj,ai5 (p2

1, p
2) + pµ1F

bj,ai
6 (p2

1, p
2)

+ pµ/pF
bj,ai
7 (p2

1, p
2) + pµ/p1

F bj,ai8 (p2
1, p

2) + pµ1/pF
bj,ai
9 (p2

1, p
2)

+ pµ1/p1
F bj,ai10 (p2

1, p
2),

where QB is the baryon charge matrix which is diagonal in channel space.
The ten coefficients of the Lorentz structures are given by

F bj,ai1 (p2
1, p

2) = eQbj,aiB

[
2C1(p2

1, p
2) + (m2

b −M2
j )Ibj,aiMBB(p2

1, p
2)− Ibj,aiBB (k2)

+ p2
1(Abj,ai(p2

1, p
2) +Bbj,ai(p2

1, p
2))

+ p2(Abj,ai(p2
1, p

2)−Bbj,ai(p2
1, p

2))
]
,

F bj,ai2 (p2
1, p

2) = eQbj,aiB mbI
bj,ai
MBB(p2

1, p
2),

F bj,ai3 (p2
1, p

2) = F bj,ai2 (p2
1, p

2),

F bj,ai4 (p2
1, p

2) = eQbj,aiB mb

[
Ibj,aiMBB(p2

1, p
2)− 2Abj,ai(p2

1, p
2)
]
,

F bj,ai5 (p2
1, p

2) = 2eQbj,aiB mb

[
Bbj,ai(p2

1, p
2)−Abj,ai(p2

1, p
2)
]
,

F bj,ai6 (p2
1, p

2) = − 2eQbj,aiB mb

[
Bbj,ai(p2

1, p
2) +Abj,ai(p2

1, p
2)
]
,

F bj,ai7 (p2
1, p

2) = 2eQbj,aiB

[
Bbj,ai(p2

1, p
2)−Abj,ai(p2

1, p
2) + Cbj,ai2 (p2

1, p
2)

+ Cbj,ai3 (p2
1, p

2)− 2Cbj,ai4 (p2
1, p

2)
]
,

F bj,ai8 (p2
1, p

2) = 2eQbj,aiB

[
Cbj,ai2 (p2

1, p
2)− Cbj,ai3 (p2

1, p
2)
]
,

F bj,ai9 (p2
1, p

2) = F bj,ai8 (p2
1, p

2),

F bj,ai10 (p2
1, p

2) = 2eQB
[
Cbj,ai2 (p2

1, p
2) + Cbj,ai3 (p2

1, p
2) + 2Cbj,ai4 (p2

1, p
2)

−Abj,ai(p2
1, p

2)−Bbj,ai(p2
1, p

2)
]
.

Similarly the second integral can be decomposed into Lorentz structures
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as:∫
ddl

(2π)d
δbaδji

1
(p− l)2 −M2

j

ieQbj,aiM (p+ p1 − 2l)µ
1

(p1 − l)2 −M2
j

1
/l −mb

= γµF̃ bj,ai1 (p2
1, p

2) + /pγ
µF̃ bj,ai2 (p2

1, p
2) + γµ/p1

F̃ bj,ai3 (p2
1, p

2)

+ /pγ
µ
/p1
F̃ bj,ai4 (p2

1, p
2) + pµF̃ bj,ai5 (p2

1, p
2) + pµ1 F̃

bj,ai
6 (p2

1, p
2)

+ pµ/pF̃
bj,ai
7 (p2

1, p
2) + pµ/p1

F̃ bj,ai8 (p2
1, p

2) + pµ1/pF̃
bj,ai
9 (p2

1, p
2)

+ pµ1/p1
F̃ bj,ai10 (p2

1, p
2),

where QM is the meson charge matrix which is diagonal in channel space.
The coefficients for this decomposition read

F̃ bj,ai1 (p2
1, p

2) = − 2eQbj,aiM C̃bj,ai1 (p2
1, p

2),

F̃ bj,ai2 (p2
1, p

2) = 0,

F̃ bj,ai3 (p2
1, p

2) = 0,

F̃ bj,ai4 (p2
1, p

2) = 0,

F̃ bj,ai5 (p2
1, p

2) = eQbj,aiM

[
mb I

bj,ai
MMB(p2

1, p
2)

+ 2mb

(
B̃bj,ai(p2

1, p
2)− Ãbj,ai(p2

1, p
2)
)]
,

F̃ bj,ai6 (p2
1, p

2) = eQbj,aiM

[
mb I

bj,ai
MMB(p2

1, p
2)

− 2mb

(
B̃bj,ai(p2

1, p
2) + Ãbj,ai(p2

1, p
2)
)]
,

F̃ bj,ai7 (p2
1, p

2) = eQbj,aiM

[
Ãbj,ai(p2

1, p
2)− B̃bj,ai(p2

1, p
2)

− 2
(
C̃bj,ai2 (p2

1, p
2) + C̃bj,ai3 (p2

1, p
2)− 2C̃bj,ai4 (p2

1, p
2)
)]
,

F̃ bj,ai8 (p2
1, p

2) = eQbj,aiM

[
Ãbj,ai(p2

1, p
2) + B̃bj,ai(p2

1, p
2)

− 2
(
C̃bj,ai2 (p2

1, p
2)− C̃bj,ai3 (p2

1, p
2)
)]
,

F̃ bj,ai9 (p2
1, p

2) = eQbj,aiM

[
Ãbj,ai(p2

1, p
2)− B̃bj,ai(p2

1, p
2)

− 2
(
C̃bj,ai2 (p2

1, p
2)− C̃bj,ai3 (p2

1, p
2)
)]
,

F̃ bj,ai10 (p2
1, p

2) = eQbj,aiM

[
Ãbj,ai(p2

1, p
2) + B̃bj,ai(p2

1, p
2)

− 2
(
C̃bj,ai2 (p2

1, p
2) + C̃bj,ai3 (p2

1, p
2) + 2C̃bj,ai4 (p2

1, p
2)
)]
.

B.2 Integrals for the extended amplitude

In this section, all integrals that are necessary for the evaluation of the
extended amplitude of chapter 4 will be evaluated. Due to the specific nature
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of the coupling V µ
b , appearing in that chapter, the loop integrals must include

additional off-diagonal elements to allow for transitions between the Λ and
Σ0 channels.

First of all, the meson tadpole integral with off-diagonal elements is given
by

Ibj,aiM =
∫

ddl

(2π)d
iδji

l2 −M2
j

= δji
(

2M2
j λ̄+

1
8π2

M2
j log

(
Mj

µbj

))
. (B.9)

Note, that for the calculation of the extended amplitude only three different
renormalization constants are used (see section 4.1), i.e. there is one renor-
malization constant µNπ for the pion-nucleon channels, one renormalization
constant µpη for the proton-η channel and one renormalization constant µK
for the channels including a kaon.

Furthermore, the δji in eq. (B.9) together with the particular composi-
tion of the final state particles in the channels of the photoproduction process
(see eq. (2.9)) render IM to be basically a diagonal matrix, but with two ad-
ditional off-diagonal components. The δji forces the initial and final mesons
to be the same, but the only channels sharing the same meson are the ΛK+

and the Σ0K+ channels, hence the only off-diagonal components of IM are
the two components mixing those two channels.

The next integral is the two-point function with one meson and one
baryon:

Ibj,aiMB,b(p
2) =

∫
ddl

(2π)d
iδji

[(p− l)2 −m2
b ][l

2 −M2
j ]

=
δji

16π2

[
−1 + log

(
m2
b

µ2
bj

)
+
M2
j −m2

b + p2

2p2
log

(
M2
j

m2
b

)

−4|q|bj,ai√
p2

artanh

(
2|q|bj,ai

√
p2

(mb +Mj)2 − p2

)]
.

(B.10)

This integral appears in two distinct forms, of which the first one is given
above, whereas the second one, which will be called IMB,a, is the transpose
in channel space of IMB,b, i.e. inital and final states of the off-diagonal
elements are interchanged. The transpose is equivalent to replacing the final
baryon state mass mb by the initial state mass ma:

Ibj,aiMB,a(p
2) =

[(
IMB,b(p2)

)T ]bj,ai = Ibj,aiMB,b(p
2)
∣∣∣∣
mb→ma

.

The three-point function with one meson and two baryons can be defined
in close analogy to IMBB of eq. (B.3):

Ibj,aiMBB(p2
1, p

2) =
∫

ddl

(2π)d
iδji

[(p− l)2 −m2
b ][(p1 − l)2 −m2

a][l2 −M2
j ]
, (B.11)
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but, of course, including the off-diagonal elements. Using the Cutkosky rules
again yields

Disc(Ibj,aiMBB(p2
1, p

2)) = − iδji

16π|k|
√
p2

log
(
Hbj,ai + 2|k||q|bj,ai

Hbj,ai − 2|k||q|bj,ai

)
.

The corresponding dispersion relation for the numeric computation reads

Ibj,aiMBB(p2
1, p

2) = − 1
2πi

∫ ∞
(mb+Mj)2

ds′
Disc( Ibj,aiMBB(p2

1, s
′) )

p2 − s′
.

As in the previous section, the integrals with vector and tensor structure
in the numerator have to be evaluated as well. The two-point function with
a vector structure can be rewritten as∫

ddl

(2π)d
iδji lµ

[(p− l)2 −m2
b ][l

2 −M2
j ]

= pµ[I(1)
MB,b(p

2)]bj,ai.

Solving for [I(1)
MB,b(p

2)]bj,ai leads to

[I(1)
MB,b(p

2)]bj,ai =
1

2p2

[
(p2 +M2

j −m2
b)I

bj,ai
MB (p2) + Ibj,aiB − Ibj,aiM

]
. (B.12)

Due to the particular renormalization scheme described in section 4.1, the
baryon tadpole integral IB as well as the baryon-baryon two-point function
IBB are set to zero. But for completeness, they will be included in the
decompositions anyway. The corresponding integral with an initial state
baryon mass can be obtained by replacing mb → ma and can therefore be
solved in complete analogy, which leads to

[I(1)
MB,a(p

2)]bj,ai = [I(1)
MB,b(p

2)]bj,ai
∣∣∣∣
mb→ma

.

The three-point function with two baryons, one meson and a vector struc-
ture in the numerator reads∫

ddl

(2π)d
iδji lµ

[(p− l)2 −m2
b ][(p1 − l)2 −m2

a][l2 −M2
j ]

= Abj,ai(p2
1, p

2) (p1 + p)µ

+ Bbj,ai(p2
1, p

2) (p1 − p)µ
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Solving for A and B, analogously to the previous section, yields

Abj,ai(p2
1, p

2) =
1

2D

[(
4[M̃2]bj,ai − ∆p2

k2
(∆p2 +m2

a −m2
b)
)
Ibj,aiMBB(p2

1, p
2)

+2 Ibj,aiBB (k2)− (1− ∆p2

k2
)Ibj,aiMB,a(p

2
1)− (1 +

∆p2

k2
)Ibj,aiMB,b(p

2)
]

Bbj,ai(p2
1, p

2) =
∆p2

2k2D

[(
4[M̃2]bj,ai +

(4p̄− k2)(−∆p2 +m2
b −m2

a)
∆p2

)
×Ibj,ajMBB(p2

1, p
2) + 2 Ibj,aiBB (k2)−

(
1− 4p̄2 − k2

∆p2

)
Ibj,aiMB,a(p

2
1)

−
(

1 +
4p̄2 − k2

∆p2

)
Ibj,aiMB,b(p

2)
]
,

where
[M̃2]bj,ai =

1
2
δji
(
p̄2 +M2

j −
1
2

(m2
a +m2

b)
)
.

Again, IBB(k2) = 0 is valid − the integral IBB appears only for complete-
ness.

The three point function with a tensor structure in the numerator is given
by ∫

ddl

(2π)d
iδji lµlν

[(p− l)2 −m2
b ][(p1 − l)2 −m2

a][l2 −M2
j ]

= Cbj,ai1 (p2
1, p

2) gµν

+ Cbj,ai2 (p2
1, p

2) (p1 + p)µ(p1 + p)ν

+ Cbj,ai3 (p2
1, p

2) (p1 − p)µ(p1 − p)ν

+ Cbj,ai4 (p2
1, p

2) ((p1 + p)µ(p1 − p)ν + (p1 − p)µ(p1 + p)ν).
(B.13)

Contracting the equation on both sides with each Dirac structure appearing
on the r.h.s. and completing squares in order to cancel the denominators
leads to four independent equations, which have the solution

Cbj,ai1 (p2
1, p

2) =
1

2(d− 2)k2D

{
2k2M2

jD I
bj,ai
MBB − 2k2∆p2[I(1)

BB(k2)]bj,ai

−
[
k4 − 2k2

(
p2 + p̄2

)
+ 2∆p4

]
Ibj,aiBB (k2)

+2p2∆p2[I(1)
MB,b(p

2)]bj,ai − 2p2
1∆p2[I(1)

MB,a(p
2
1)]bj,ai

+
[ (
k2 − 4p̄2

) (
4k2[M̃2]bj,ai + ∆p2

(
[∆m2]bj,ai −∆p2

)) ]
×Abj,ai(p2

1, p
2)

+
[
2k2
(
p2

1m
2
a − p2m2

b + ∆p2M2
j

)
+ k4

(
[∆m2]bj,ai −∆p2

)
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−2k2p̄2
(
[∆m2]bj,ai − 3∆p2

)
+ 2∆p4

(
[∆m2]bj,ai −∆p2

)]
× Bbj,ai(p2

1, p
2)
}
,

Cbj,ai2 (p2
1, p

2) =
1

k2D

{[
k2M2

j +
1
4

[∆m2]bj,ai(∆p2 − [∆m2]bj,ai)
]
Ibj,aiMBB(p2

1, p
2)

+k2Ibj,aiBB (k2) +
∆p2

2

[
k2Bbj,ai(p2

1, p
2)−∆p2Abj,ai(p2

1, p
2)
]

−k
2

4

[
[I(1)
MB,a(p

2
1)]bj,ai + [I(1)

MB,b(p
2)]bj,ai

]
+

∆p2

4

[
[I(1)
MB,a(p

2
1)]bj,ai − [I(1)

MB,b(p
2)]bj,ai

]
+

∆m2

4

[
Ibj,aiMB,b(p

2)− Ibj,aiMB,a(p
2
1)
]
− (d− 1)k2Cbj,aj1 (p2

1, p
2)
}
,

Cbj,ai3 (p2
1, p

2) =
1

k2D

{
(4p̄2 − k2)

[
M2
j I

bj,aj
MBB(p2

1, p
2) +

1
2
Ibj,aiBB (k2)

]
−2[M̃2]bj,ai

[
(4p̄2 − k2)Abj,ai(p2

1, p
2)−∆p2Bbj,ai(p2

1, p
2)
]

+
1
4

(4p̄2 −∆p2 − k2)[I(1)
MB,a(p

2
1)]bj,ai

+
1
4

(4p̄+ ∆p2 − k2)[I(1)
MB,b(p

2)]bj,ai

−(d− 1)(4p̄2 − k2)Cbj,ai1 (p2
1, p

2)
}
,

Cbj,ai4 (p2
1, p

2) =
1

k2D

{
(∆p2M2

j + [∆m2]bj,ai[M̃2]bj,ai)Ibj,aiMBB(p2
1, p

2)

+
(

∆p2 +
[∆m2]bj,ai

2

)
Ibj,aiBB (k2)

−∆p2

2

[
(4p̄2 − k2)Abj,ai(p2

1, p
2)−∆p2Bbj,ai(p2

1, p
2)
]

+
1
4

(4p̄2 −∆p2 − k2)[I(1)
MB,a(p

2
1)]bj,ai

−1
4

(4p̄2 + ∆p2 − k2)[I(1)
MB,b(p

2)]bj,ai

− [∆m2]bj,ai

4

[
Ibj,aiMB,b(p

2) + Ibj,aiMB,a(p
2
1)
]

−(d− 1)∆p2Cbj,ai1 (p2
1, p

2)
}
, (B.14)

where
[∆m2]bj,ai = δji(m2

b −m2
a).

Again, the coefficient C1 picks up an additional constant in the limit of
d→ 4. Two cases of are already shown in eq. (B.8) that apply equally to C1,
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however, a third case occurs in the course of the calculation of the extended
amplitude:

d Cbj,ai1 → 4 Cbj,ai1 (d = 4)− δji 1
32π2

.

To conclude this appendix, one last integral will be decomposed which
will be used during the evaluation of the extended amplitude:∫

ddl

(2π)d
1

/p− /l −mb
iδji[/k, γµ]gbj,aib

1
(/p1
− /l −ma)(l2 −M2

j )

= γµF bj,aib,1 (p2
1, p

2) + /pγ
µF bj,aib,2 (p2

1, p
2) + γµ/p1

F bj,aib,3 (p2
1, p

2)

+ /pγ
µ
/p1
F bj,aib,4 (p2

1, p
2) + pµF bj,aib,5 (p2

1, p
2) + pµ1F

bj,ai
b,6 (p2

1, p
2)

+ pµ/pF
bj,ai
b,7 (p2

1, p
2) + pµ/p1

F bj,aib,8 (p2
1, p

2) + pµ1/pF
bj,ai
b,9 (p2

1, p
2)

+ pµ1/p1
F bj,aib,10 (p2

1, p
2) + pµ/p/p1

F bj,aib,11 (p2
1, p

2) + pµ1/p/p1
F bj,aib,12 (p2

1, p
2),

where the coefficients read

F bj,aib,1 (p2
1, p

2) = 2gbj,aib

{
ma

[ (
k2 − 2p2

)
Abj,ai(p2

1, p
2) + k2Bbj,ai(p2

1, p
2)

+ p2Ibj,aiMBB(p2
1, p

2)
]

+mb

[ (
k2 − 2p2

1

)
Abj,ai(p2

1, p
2)

− k2Bbj,ai(p2
1, p

2) + p2
1I

bj,ai
MBB(p2

1, p
2)
]}
,

F bj,aib,2 (p2
1, p

2) = 2gbj,aib

{
mamb Ibj,aiMBB(p2

1, p
2)

+ p2
1

[
4Cbj,ai2 (p2

1, p
2)− 4Abj,ai(p2

1, p
2) + Ibj,aiMBB(p2

1, p
2)
]

− k2
[
Bbj,ai(p2

1, p
2)−Abj,ai(p2

1, p
2) + Cbj,ai2 (p2

1, p
2)

+ Cbj,ai3 (p2
1, p

2)− 2Cbj,ai4 (p2
1, p

2)
]

+
1

32π2

}
,

F bj,aib,3 (p2
1, p

2) = 2gbj,aib

{
mamb Ibj,aiMBB(p2

1, p
2)

+ k2
[
Abj,ai(p2

1, p
2) + Bbj,ai(p2

1, p
2)− Cbj,ai2 (p2

1, p
2)

− Cbj,ai3 (p2
1, p

2)− 2Cbj,ai4 (p2
1, p

2)
]

+ p2
[
− 4Abj,ai(p2

1, p
2) + 4Cbj,ai2 (p2

1, p
2) + Ibj,aiMBB(p2

1, p
2)
]

+
1

32π2

}
,

F bj,aib,4 (p2
1, p

2) = 2gbj,aib (ma +mb)
[
Ibj,aiMBB(p2

1, p
2)− 2Abj,ai(p2

1, p
2)
]
,
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F bj,aib,5 (p2
1, p

2) = − 2gbj,aib

{
mamb Ibj,aiMBB(p2

1, p
2)

+ ∆p2
[
Abj,ai(p2

1, p
2) + 2p̄2(Bbj,ai(p2

1, p
2)− 2Cbj,ai4 (p2

1, p
2))

−
(
k2 − 2∆p2

)
Cbj,ai2 (p2

1, p
2) + k2Cbj,ai3 (p2

1, p
2)
]

+
1

32π2

}
,

F bj,aib,6 (p2
1, p

2) = − 2gbj,aib

{
mamb Ibj,aiMBB(p2

1, p
2)

+
[
2p̄2
(
Bbj,ai(p2

1, p
2)− 2Cbj,ai4 (p2

1, p
2)
)
−∆p2Abj,ai(p2

1, p
2)

+
(
k2 − 2∆p2

)
Cbj,ai2 (p2

1, p
2)− k2Cbj,ai3 (p2

1, p
2)
]

+
1

32π2

}
,

F bj,aib,7 (p2
1, p

2) = 2gbj,aib

{
ma

[
Abj,ai(p2

1, p
2)− Bbj,ai(p2

1, p
2)− Ibj,aiMBB(p2

1, p
2)
]

+mb

[
Bbj,ai(p2

1, p
2)−Abj,ai(p2

1, p
2)
]}
,

F bj,aib,8 (p2
1, p

2) = 2gbj,aib

{
ma

[
Abj,ai(p2

1, p
2) + Bbj,ai(p2

1, p
2)
]

+mb

[
3Abj,ai(p2

1, p
2)− Bbj,ai(p2

1, p
2)− Ibj,aiMBB(p2

1, p
2)
]}
,

F bj,aib,9 (p2
1, p

2) = 2gbj,aib

{
ma

[
3Abj,ai(p2

1, p
2) + Bbj,ai(p2

1, p
2)− Ibj,aiMBB(p2

1, p
2)
]

+mb

[
Abj,ai(p2

1, p
2)− Bbj,ai(p2

1, p
2)
]}
,

F bj,aib,10 (p2
1, p

2) = 2gbj,aib

{
mb

[
Abj,ai(p2

1, p
2) + Bbj,ai(p2

1, p
2)− Ibj,aiMBB(p2

1, p
2)
]

−ma

[
Abj,ai(p2

1, p
2) + Bbj,ai(p2

1, p
2)
]}
,

F bj,aib,11 (p2
1, p

2) = 2gbj,aib

{
4Abj,ai(p2

1, p
2)− 2Bbj,ai(p2

1, p
2)− 4Cbj,ai2 (p2

1, p
2)

+ 4Cbj,ai4 (p2
1, p

2)− Ibj,aiMBB(p2
1, p

2)
}
,

F bj,aib,12 (p2
1, p

2) = 2gbj,aib

{
4Abj,ai(p2

1, p
2) + 2Bbj,ai(p2

1, p
2)

− 4
[
Cbj,ai2 (p2

1, p
2) + Cbj,ai4 (p2

1, p
2)
]
− Ibj,aiMBB(p2

1, p
2)
}
.



Appendix C

Gauge invariance ofMµ

In this appendix, the gauge invariance of the leading order photoproduction
amplitude Mµ of chapter 3 shall be proven. The proof will proceed in
analogy to [31]. To this end, the Ward-Takahashi identity kµMµ = 0 shall
be used, where k is the momentum of the external photon. Note, that the
proof needs the external particles to be set on the mass shell. First, consider

1
/p−mp

/k =
1

/p−mp
(/p− /p1

) = 1,

where in the first step the it was used that the total momentum is p = p1 +k
and in the second step the proton momentum p1 was set on-shell. With this
identity, the amplitude Sµs of eq. (3.4) can be reduced upon contraction with
kµ to

kµS
µ
s = −eΓ(/q, /p).

Similarly, with k = p− p1 = −(p1 − q − p2) the identity

/k
1

/p1
− /q −m

= −1

holds, where p2 was set on-shell. Thus the amplitude Sµu of eq. (3.5) yields

kµS
µ
u = eQBΓ(/q, /p1

).

And likewise

kµ(2q − k)µ
1

(q − k)2 −M2
= −((q − k)2 −M2)

1
(q − k)2 −M2

= −1,

can be used for the amplitude Sµt of eq. (3.7) to obtain

kµS
µ
t = eQMΓ(/q − /k, /p1

).

87



88 APPENDIX C. GAUGE INVARIANCE OFMµ

Such simplifications can be used also to contract the other amplitudes
SµB of eq. (3.6), SµM of eq. (3.8), SµKR of eq. (3.9), SµWT1 of eq. (3.10) and
SµWT2 of eq. (3.11) to obtain

kµS
µ
B =

∫
ddl

(2π)d
T (/q, /l ; p)iS(/p− /l)∆(l)eQBΓ(/l , /p1

)

−
∫

ddl

(2π)d
T (/q, /l ; p)eQBiS(/p1

− /l)∆(l)Γ(/l , /p1
),

kµS
µ
M =

∫
ddl

(2π)d
T (/q, /l ; p)iS(/p− /l)∆(l)eQMΓ(/l − /k, /p1

)

−
∫

ddl

(2π)d
T (/q, /l + /k; p)eQM iS(/p1

− /l)∆(l)Γ(/l , /p1
),

kµS
µ
KR = eQM ĝ/kγ5 +

∫
ddl

(2π)d
T (/q, /l ; p)iS(/p− /l)∆(l)eQM ĝ/kγ5,

kµS
µ
WT1 = e/k{QM , g}

∫
ddl

(2π)d
iS(/p1

− /l)∆(l)Γ(/l , /p1
),

kµS
µ
WT2 =

∫
dd l̃

(2π)d
T (/q, /̃l ; p)iS(/p− /̃l)∆(l̃)e/k{QM , g}

×
∫

ddl

(2π)d
iS(/p1

− /l)∆(l)Γ(/l , /p1
).

The cancellation of these graphs occurs on two different levels. The first
being the cancellation of the tree graphs: The tree part of kµ(Sµs + Sµu +
Sµt + SµKR) can be evaluated as

−eĝγ5 + eQB ĝ/qγ5 + eQM ĝ(/q − /k)γ5 + eQM ĝ/kγ5

= −eĝγ5 + eQB ĝ/qγ5 + eQM ĝ/qγ5

= 0,

where in the last step QB + QM = 1 was used. The other cancellations
happen for the loop contributions. To see this, consider the integral equations

T (/q, /l ; p) = g(/q + /l) +
∫

dd l̃

(2π)d
T (/q, /̃l ; p)iS(/p− /̃l)∆(l̃)g(/l + /̃l), (C.1)

Γ(/l , /p1
) = ĝ/lγ5 +

∫
dd l̃

(2π)d
g(/l + /̃l)iS(/p1

− /̃l)∆(l̃)Γ(/̃l , /p1
), (C.2)

which are equivalent to eq. (2.4) and eq. (3.1), respectively. The equiva-
lence can be easily seen by explicitly iterating the integral equations. Using
eq. (C.1) in the second term of kµS

µ
B and kµS

µ
M and using eq. (C.2) in the

first term of kµS
µ
B and kµS

µ
M leads to a rather lengthy but trivial cancel-

lation of all loop contributions. This, together with the cancellation of the
tree graphs, leads to kµMµ = 0 and therefore the amplitudeMµ is indeed
gauge invariant.



Appendix D

Decompositions of the
amplitudes

This appendix provides the decompositions into independent Lorentz struc-
tures of the various amplitudes entering the photoproduction amplitudes.
Section D.1 is dedicated to the amplitudes necessary for the leading order
calculation of chapter 3, whereas section D.2 contains the additional ampli-
tudes for the extension of chapter 4. All integrals used in this chapter are
provided in appendix B.

D.1 Decompositions for the leading order calcula-
tion

The amplitude Sµs of eq. (3.4) can be decomposed as follows:

Sµs = (/q/pS
/q/pγ
s + /qS

/qγ
s + /pS

/pγ
s + Sγs )γµγ5

with

S
/q/pγ
s =

e

m2
p − s

(Γ2(p)−mpΓ1(p)),

S
/qγ
s =

e

m2
p − s

(sΓ1(p)−mpΓ2(p)),

S
/pγ
s =

e

m2
p − s

(Γ4(p)−mpΓ3(p)),

Sγs =
e

m2
p − s

(sΓ3(p)−mpΓ4(p)),

where mp is the proton mass of eq. (2.15), the Γi are the coefficients of
the decomposition of Γ of eq. (3.2) and s = p2 = (p1 + k)2 is the squared
center-of-mass energy. Moreover, channel indices will be omitted for brevity.

89



90 APPENDIX D. DECOMPOSITIONS OF THE AMPLITUDES

Before proceeding, some functions will be introduced for a more compact
notation:

Y1 = m2
p Γ1 (p1)−mp (Γ2 (p1) + Γ3 (p1)) + Γ4 (p1)

Y2 = Γ2 (p1)−mpΓ1 (p1)

Y3 = − (mp +m) Γ2 (p1) +
(
m2
p +mpm

)
Γ1 (p1)−mpΓ3 (p1) + Γ4 (p1) .

Note, that the proton mass mp is a number, while m is a matrix with the
baryon masses on its diagonal as given by eq. (2.5). Therefore, any numbers
like mp are understood to be multiplied by the identity matrix in channel
space. Furthermore, the Mandelstam variables t and u that are needed for
the following amplitudes are defined as

t = M2 + k2 − 2EkEq + 2|k||q| cos θ,

u = k2 +m2
p +m2 +M2 − s− t,

where |k| and |q| are the moduli of the center-of-mass three-momenta of
the photon and the meson, respectively, and θ is the scattering angle in the
center-of-mass system. The center-of-mass energies are given by

Ek =
√
|k|2 + k2, Eq =

√
|q|2 +M2.

Note, that the Mandelstam variables t and u are matrices in channel space.
Now, the amplitude Sµu of eq. (3.5) can be decomposed as

Sµu = (qµSqu + /qγ
µS

/qγ
u + γµSγu)γ5

with

Squ = − 2S/
qγ
u =

2eQB
u−m2

Y3,

Sγu =
eQB
m2 − u

(
Γ1(p1)mp(u−m2

p)− Γ2(p1)(u−m2
p) + (m2

p −mpm)Γ3(p1)

+ (m−mp)Γ4(p1)
)
.

Here, matrices appearing in the denominator denote matrix inversion. The
amplitude Sµt of eq. (3.7) reads

Sµt =
(
pµSpt + pµ1S

p1
t + qµSqt + /qq

µS
/qq
t + /pq

µS
/pq
t + /qp

µS
/qp
t + /pp

µS
/pp
t + /qp

µ
1S

/qp1
t

+ /pp
µ
1S

/pp1
t

)
γ5

with

Spt =
eQM
t−M2

Y1, Sp1t = −Spt , Sqt = −2Spt ,

S
/qq
t = − 2eQM

t−M2
Y2, S

/pq
t = −S/qqt , S

/qp
t =

eQM
t−M2

Y2,
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S
/pp
t = −S/qpt , S

/qp1
t = −S/qpt , S

/pp1
t = S

/qp
t .

The next graph is SµB of eq. (3.6), whose decomposition reads

SµB =
(
γµSγB + pµSpB + pµ1S

p1
B + /qγ

µS
/qγ

B + /pγ
µS

/pγ

B + /q/pγ
µS

/q/pγ

B + /qp
µS

/qp

B

+ /pp
µS

/pp

B + /q/pp
µS

/q/pp

B + /qp
µ
1S

/qp1
B + /pp

µ
1S

/pp1
B + /q/pp

µ
1S

/q/pp1
B

)
γ5

with

SγB = − s
(
T3mG1(p)eQBY2 − T3G0(p)eQBY2 − T5G1(p)eQBY2

− T7G1(p)eQBY2 − T3mF2Y3 + T3F1Y3 + T5F2Y3 + T7F2Y3

)
+mp

(
− T5eQBG1(p1) + s(−T3mF4 + T3F3 + T5F4 + T7F4)

− T5mF3 + T8F3

)
Y3 − T5mG0(p)eQBY2 + T5eQBG0(p1)Y3

+ T8G0(p)eQBY2 − T5eQBIMY2 + T5mF1Y3 − T8F1Y3,

SpB = mp(−T5mF8Y3 + sT3F8Y3 + T8F8Y3) + T5mF5Y3 − T8F5Y3

− s(−T3mF7Y3 + T3F5Y3 + T5F7Y3 + T7F7Y3),
Sp1B = mp(−T5mF10Y3 + sT3F10Y3 + T8F10Y3) + T5mF6Y3 − T8F6Y3

− s(−T3mF9 + T3F6 + T5F9 + T7F9)Y3,

S
/qγ

B = − s
(
T1mG1(p)eQBY2 − T1G0(p)eQBY2 − T2G1(p)eQBY2

− T4G1(p)eQBY2 − T1mF2Y3 + T1F1Y3 + T2F2Y3 + T4F2Y3

)
+mp

(
− T2eQBG1(p1) + s(−T1mF4 + T1F3 + T2F4 + T4F4)

− T2mF3 + T6F3

)
Y3 − T2mG0(p)eQBY2 + T2eQBG0(p1)Y3

+ T6G0(p)eQBY2 − T2eQBIMY2 + T2mF1Y3 − T6F1Y3,

S
/pγ

B = mp

(
− T3eQBG1(p1)− T3mF3 − T5mF4 + sT3F4 + T5F3 + T7F3

+ T8F4

)
Y3 + s(T3G1(p)eQBY2 − T3F2Y3)− T3mG0(p)eQBY2

− T5mG1(p)eQBY2 + T3eQBG0(p1)Y3 + T5G0(p)eQBY2

+ T7G0(p)eQBY2 + T8G1(p)eQBY2 − T3eQBIMY2 + T3mF1Y3

+ T5mF2Y3 − T5F1Y3 − T7F1Y3 − T8F2Y3,

S
/q/pγ

B = mp

(
− T1eQBG1(p1)− T1mF3 − T2mF4 + sT1F4 + T2F3 + T4F3

+ T6F4

)
Y3 − s(T1F2Y3 − T1G1(p)eQBY2)− T1mG0(p)eQBY2

− T2mG1(p)eQBY2 + T1eQBG0(p1)Y3 + T2G0(p)eQBY2

+ T4G0(p)eQBY2 + T6G1(p)eQBY2 − T1eQBIMY2 + T1mF1Y3

+ T2mF2Y3 − T2F1Y3 − T4F1Y3 − T6F2Y3,
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S
/qp

B = mp(−T2mF8 + sT1F8 + T6F8)Y3 + T2mF5Y3 − T6F5Y3

− s(−T1mF7 + T1F5 + T2F7 + T4F7)Y3,

S
/pp

B = mp(−T3mF8 + T5F8 + T7F8)Y3

− (−T3mF5 − T5mF7 + sT3F7 + T5F5 + T7F5 + T8F7)Y3,

S
/q/pp

B = mp(−T1mF8 + T2F8 + T4F8)Y3

− (−T1mF5 − T2mF7 + sT1F7 + T2F5 + T4F5 + T6F7)Y3,

S
/qp1
B = mp(−T2mF10 + sT1F10 + T6F10)Y3 + T2mF6Y3 − T6F6Y3

− s(−T1mF9 + T1F6 + T2F9 + T4F9)Y3,

S
/pp1
B = mp(−T3mF10 + T5F10 + T7F10)Y3

− (−T3mF6 − T5mF9 + sT3F9 + T5F6 + T7F6 + T8F9)Y3,

S
/q/pp1
B = mp(−T1mF10 + T2F10 + T4F10)Y3

− (−T1mF6 − T2mF9 + sT1F9 + T2F6 + T4F6 + T6F9)Y3.

The demposition of SµM of eq. (3.8) is given by

SµM =
(
γµSγM + pµSpM + pµ1S

p1
M + /qγ

µS
/qγ

M + /pγ
µS

/pγ

M + /q/pγ
µS

/q/pγ

M + /qp
µS

/qp

M

+ /pp
µS

/pp

M + /q/pp
µS

/q/pp

M + /qp
µ
1S

/qp1
M + /pp

µ
1S

/pp1
M + /q/pp

µ
1S

/q/pp1
M

)
γ5

with

SγM = − T5eQMd1Y2 + T5mF̃1Y3 − sT3F̃1Y3 − T8F̃1Y3,

SpM = mp(−T5eQMd2Y2 − T5mF̃8Y3 + sT3F̃8Y3 + T8F̃8Y3)

− s(T3eQMd2Y2 − T3mF̃7Y3 + T3F̃5Y3 + T5F̃7Y3 + T7F̃7Y3)

+ T5mF̃5Y3 − T8F̃5Y3,

Sp1M = mp(T5eQMd2Y2 − T5mF̃10Y3 + sT3F̃10Y3 + T8F̃10Y3)

+ sT3eQMd2Y2 − s(−T3mF̃9 + T3F̃6 + T5F̃9 + T7F̃9)Y3 + T5mF̃6Y3

− T8F̃6Y3,

S
/qγ

M = − T2eQMd1Y2 + T2mF̃1Y3 − sT1F̃1Y3 − T6F̃1Y3,

S
/pγ

M = − T3eQMd1Y2 + T3mF̃1Y3 − T5F̃1Y3 − T7F̃1Y3,

S
/q/pγ

M = − T1eQMd1Y2 + T1mF̃1Y3 − T2F̃1Y3 − T4F̃1Y3,

S
/qp

M = mp(−T2eQMd2Y2 − T2mF̃8Y3 + sT1F̃8Y3 + T6F̃8Y3)− sT1eQMd2Y2

− s(−T1mF̃7 + T1F̃5 + T2F̃7 + T4F̃7)Y3 + T2mF̃5Y3 − T6F̃5Y3,

S
/pp

M = mp(−T3eQMd2Y2 − T3mF̃8Y3 + T5F̃8Y3 + T7F̃8Y3)− T5eQMd2Y2

− (−T3mF̃5 − T5mF̃7 + T5F̃5 + T7F̃5 + T8F̃7)Y3 − sT3F̃7Y3,

S
/q/pp

M = mp(−T1eQMd2Y2 − T1mF̃8Y3 + T2F̃8Y3 + T4F̃8Y3)− T2eQMd2Y2
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− (−T1mF̃5 − T2mF̃7 + T2F̃5 + T4F̃5 + T6F̃7)Y3 − sT1F̃7Y3,

S
/qp1
M = mp(T2eQMd2Y2 − T2mF̃10Y3 + sT1F̃10Y3 + T6F̃10Y3) + sT1eQMd2Y2

− s(−T1mF̃9 + T1F̃6 + T2F̃9 + T4F̃9)Y3 + T2mF̃6Y3 − T6F̃6Y3,

S
/pp1
M = mp(T3eQMd2Y2 − T3mF̃10Y3 + T5F̃10Y3 + T7F̃10Y3) + T5eQMd2Y2

− (−T3mF̃6 − T5mF̃9 + T5F̃6 + T7F̃6 + T8F̃9)Y3 − sT3F̃9Y3,

S
/q/pp1
M = mp(T1eQMd2Y2 − T1mF̃10Y3 + T2F̃10Y3 + T4F̃10Y3) + T2eQMd2Y2

− (−T1mF̃6 − T2mF̃9 + T2F̃6 + T4F̃6 + T6F̃9)Y3 − sT1F̃9Y3,

where the abbreviations Ti = Ti(p) and

d1 = − 2
(

1
3

(
(M2 − 1

4
k2)IMM (k2) + IM

)
+

1
48π2

(1
6
k2 −M2

))
,

d2 =
1
2
IMM (k2)− 2

k2

(
1
3

(
(k2 −M2)IMM (k2) + IM

)
− 1

48π2

(1
6
k2 −M2

))
where used. The next graph is SµKR of eq. (3.9):

SµKR =
(
SγKR + /qS

/qγ

KR + /pS
/pγ

KR + /q/pS
/q/p

KR

)
γµγ5

with

SγKR = eQM ĝ +
(
s(−T3m+ T5 + T7)G1(p) + (−T5m+ sT3 + T8)G0(p)

− T5IM

)
eQM ĝ,

S
/qγ

KR =
(
s(−T1m+ T2 + T4)G1(p) + (−T2m+ sT1 + T6)G0(p)

− T2IM

)
eQM ĝ,

S
/pγ

KR =
(

(−T5m+ sT3 + T8)G1(p) + (−T3m+ T5 + T7)G0(p)

− T3IM

)
eQM ĝ,

S
/q/pγ

KR =
(

(−T2m+ sT1 + T6)G1(p) + (−T1m+ T2 + T4)G0(p)

− T1IM

)
eQM ĝ

The graph SµWT1 of eq. (3.10) is given by

SµWT1 = γµγ5S
γ
WT1

with

SγWT1 = e(QMg + gQM )
((
G0(p1)−mpG1(p1)

)
Y3 − IMY2

)
.
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And lastly, the decomposition of the graph SµWT2 of eq. (3.11) reads

SµWT2 =
(
SγWT2 + /qS

/qγ

WT2 + /pS
/pγ

WT2 + /q/pS
/q/pγ

WT2

)
γµγ5

with

SγWT2 =
(
s(−T3m+ T5 + T7)G1(p) + (−T5m+ sT3 + T8)G0(p)
− T5IM

)
SγWT1,

S
/qγ

WT2 =
(
s(−T1m+ T2 + T4)G1(p) + (−T2m+ sT1 + T6)G0(p)
− T2IM

)
SγWT1,

S
/pγ

WT2 =
(
(−T5m+ sT3 + T8)G1(p) + (−T3m+ T5 + T7)G0(p)
− T3IM

)
SγWT1,

S
/q/pγ

WT2 =
(
(−T2m+ sT1 + T6)G1(p) + (−T1m+ T2 + T4)G0(p)
− T1IM

)
SγWT1.

The total amplitude can be obtained by adding all amplitudes. Then, the
decomposition of the total amplitude is given by

Mµ =γµγ5M1 + qµγ5M2 + pµγ5M3 + pµ1γ5M4 + /qγ
µγ5M5 + /pγ

µγ5M6

+ /q/pγ
µγ5M7 + /qq

µγ5M8 + /pq
µγ5M9 + /qp

µγ5M10 + /pp
µγ5M11

+ /q/pp
µγ5M12 + /qp

µ
1γ5M13 + /pp

µ
1γ5M14 + /q/pp

µ
1γ5M15.

D.2 Decomposition of the extended amplitude

In this section, the additional amplitudes entering the extended amplitude of
chapter 4 will be decomposed. The first amplitude that will be decomposed
is Sb,s of eq. (4.3):

Sµb,s =
(
γµSγb,s + pµSpb,s + pµ1S

p1
b,s + /qγ

µS
/qγ

b,s + /pγ
µS

/pγ

b,s + /q/pγ
µS

/q/pγ

b,s + /qp
µS

/qp

b,s

+ /pp
µS

/pp

b,s + /q/pp
µS

/q/pp

b,s + /qp
µ
1S

/qp1
b,s + /pp

µ
1S

/pp1
b,s + /q/pp

µ
1S

/q/pp1
b,s

)
γ5

with

Sγb,s =
1

s−m2
p

(
2gp,pb m2

pΓ4(p)− 4sgp,pb mpΓ3(p) + 2sgp,pb Γ4(p)
)
,

Spb,s =
1

m2
p − s

(
2sgp,pb Γ3(p)− 2gp,pb mpΓ4(p)

)
,

Sp1b,s = Spb,s,

S
/qγ

b,s =
1

s−m2
p

(
2gp,pb m2

pΓ2(p)− 4sgp,pb mpΓ1(p) + 2sgp,pb Γ2(p)
)
,

S
/pγ

b,s =
1

s−m2
p

(
2gp,pb m2

pΓ3(p)− 4gp,pb mpΓ4(p) + 2sgp,pb Γ3(p)
)
,
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S
/q/pγ

b,s =
1

s−m2
p

(
2gp,pb m2

pΓ1(p)− 4gp,pb mpΓ2(p) + 2sgp,pb Γ1(p)
)
,

S
/qp

b,s =
1

s−m2
p

(
2gp,pb mpΓ2(p)− 2sgp,pb Γ1(p)

)
,

S
/pp

b,s =
1

s−m2
p

(
2gp,pb mpΓ3(p)− 2gp,pb Γ4(p)

)
,

S
/q/pp

b,s =
1

s−m2
p

(
2gp,pb mpΓ1(p)− 2gp,pb Γ2(p)

)
,

S
/qp1
b,s = S

/qp

b,s,

S
/pp1
b,s = S

/pp

b,s,

S
/q/pp1
b,s = S

/q/pp

b,s ,

where the coupling gp,pb is the component of gb that corresponds to a γp→ p
vertex, i.e. the photon couples to the proton. The decomposition of Sµb,u of
eq. (4.4) is given by

Sµb,u =
(
γµSγb,u + pµSpb,u + pµ1S

p1
b,u + /qγ

µS
/qγ

b,u + /pγ
µS

/pγ

b,u + /q/pγ
µS

/q/pγ

b,u + /qp
µS

/qp

b,u

+ /qp
µ
1S

/qp1
b,u + qµSqb,u + /pq

µS
/pq

b,u

)
γ5

with

Sγb,u = 2gb
1

u−m2

(
− k2m2

pΓ1(p1) + k2mpΓ2(p1) + k2mpΓ3(p1)−mk2mpΓ1(p1)

+mk2Γ2(p1)− k2Γ4(p1)−M2m2
pΓ1(p1) +M2mpΓ2(p1) +M2mpΓ3(p1)

−mM2mpΓ1(p1) +mM2Γ2(p1)−m4
pΓ1(p1) +m3

pΓ2(p1) +m3
pΓ3(p1)

−m2
pΓ4(p1)−m2

pmΓ3(p1) +mpmΓ4(p1)−M2Γ4(p1)
)

+ 2tgb
1

u−m2

(
m2
pΓ1(p1)−mpΓ2(p1)−mpΓ3(p1) +mpmΓ1(p1)

−mΓ2(p1) + Γ4(p1)
)

+ 2ugb
gb

u−m2

(
m2
pΓ1(p1)−mpΓ2(p1)

)
,

Spb,u = − 2
(
gb

1
u−m2

(mp −m)Γ4(p1) + gb
1

u−m2
(mpm−m2

p)Γ3(p1)

+ (u−m2
p)gb

1
u−m2

Γ2(p1) + (m3
p −mpu)gb

1
u−m2

Γ1(p1)
)
,

Sp1b,u = Spb,u,

S
/q/pγ

b,u = 2gb
1

u−m2
Y3,

S
/qγ

b,u = −mpS
/q/pγ

b,u ,

S
/pγ

b,u = − Spb,u,
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S
/qp

b,u = − S/q/pγb,u ,

S
/qp1
b,u = S

/qp

b,u,

Sqb,u = − 2mpS
/qp

b,u,

S
/pq

b,u = − 2S/
qp

b,u.

The amplitude Sµb,B of eq. (4.5) can be decomposed as

Sµb,B =
(
γµSγb,B + pµSpb,B + pµ1S

p1
b,B + /qγ

µS
/qγ

b,B + /pγ
µS

/pγ

b,B + /q/pγ
µS

/q/pγ

b,B + /qp
µS

/qp

b,B

+ /pp
µS

/pp

b,B + /q/pp
µS

/q/pp

b,B + /qp
µ
1S

/qp1
b,B + /pp

µ
1S

/pp1
b,B + /q/pp

µ
1S

/q/pp1
b,B

)
γ5

with

Sγb,B = T3(−sFb,1)Γ4(p1) + T3(smpFb,1)Γ2(p1) + T3(smpFb,1)Γ3(p1)

+ T3(−sm2
pFb,1)Γ1(p1) + T3(smpFb,3)Γ4(p1) + T3(−sm2

pFb,3)Γ2(p1)

+ T3(−sm2
pFb,3)Γ3(p1) + T3(sm3

pFb,3)Γ1(p1) + T5(−sFb,2)Γ4(p1)

+ T5(smpFb,2)Γ2(p1) + T5(smpFb,2)Γ3(p1) + T5(−sm2
pFb,2)Γ1(p1)

+ T5(smpFb,4)Γ4(p1) + T5(−sm2
pFb,4)Γ2(p1) + T5(−sm2

pFb,4)Γ3(p1)

+ T5(sm3
pFb,4)Γ1(p1) + T7(−sFb,2)Γ4(p1) + T7(smpFb,2)Γ2(p1)

+ T7(smpFb,2)Γ3(p1) + T7(−sm2
pFb,2)Γ1(p1) + T7(smpFb,4)Γ4(p1)

+ T7(−sm2
pFb,4)Γ2(p1) + T7(−sm2

pFb,4)Γ3(p1) + T7(sm3
pFb,4)Γ1(p1)

+ T8(−Fb,1)Γ4(p1) + T8(mpFb,1)Γ2(p1) + T8(mpFb,1)Γ3(p1)

+ T8(−m2
pFb,1)Γ1(p1) + T8(mpFb,3)Γ4(p1) + T8(−m2

pFb,3)Γ2(p1)

+ T8(−m2
pFb,3)Γ3(p1) + T8(m3

pFb,3)Γ1(p1) + T3m(sFb,2)Γ4(p1)

+ T3m(−smpFb,2)Γ2(p1) + T3m(−smpFb,2)Γ3(p1) + T3m(sm2
pFb,2)Γ1(p1)

+ T3m(−smpFb,4)Γ4(p1) + T3m(sm2
pFb,4)Γ2(p1) + T3m(sm2

pFb,4)Γ3(p1)

+ T3m(−sm3
pFb,4)Γ1(p1) + T3(−2sIM )gbΓ2(p1) + T3gb(2sG0(p1))Γ4(p1)

+ T3gb(−2smpG0(p1))Γ2(p1) + T3gb(−2smpG0(p1))Γ3(p1)

+ T3gb(2sm2
pG0(p1))Γ1(p1) + T3gb(−2smpG1(p1))Γ4(p1)

+ T3gb(2sm2
pG1(p1))Γ2(p1) + T3gb(2sm2

pG1(p1))Γ3(p1)

+ T3gb(−2sm3
pG1(p1))Γ1(p1) + T3(2sIMmp)gbΓ1(p1) + T3(sFb,1)mΓ2(p1)

+ T3(−smpFb,1)mΓ1(p1) + T3(−smpFb,3)mΓ2(p1) + T3(sm2
pFb,3)mΓ1(p1)

+ T3(−2smpG0(p))gbΓ2(p1) + T3(2sm2
pG0(p))gbΓ1(p1)

+ T3(2s2G1(p))gbΓ2(p1) + T3(−2s2mpG1(p))gbΓ1(p1) + T5mFb,1Γ4(p1)

+ T5m(−mpFb,1)Γ2(p1) + T5m(−mpFb,1)Γ3(p1) + T5m(m2
pFb,1)Γ1(p1)

+ T5m(−mpFb,3)Γ4(p1) + T5m(m2
pFb,3)Γ2(p1) + T5m(m2

pFb,3)Γ3(p1)
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+ T5m(−m3
pFb,3)Γ1(p1) + T5gb(−2mpG0(p1))Γ4(p1) + T5gb(2m2

pG0(p1))Γ2(p1)

+ T5gb(2m2
pG0(p1))Γ3(p1) + T5gb(−2m3

pG0(p1))Γ1(p1)

+ T5gb(2m2
pG1(p1))Γ4(p1) + T5gb(−2m3

pG1(p1))Γ2(p1)

+ T5gb(−2m3
pG1(p1))Γ3(p1) + T5gb(2m4

pG1(p1))Γ1(p1)

+ T5(2IMmp)gbΓ2(p1) + T5(−2IMm2
p)gbΓ1(p1) + T5(sFb,2)mΓ2(p1)

+ T5(−smpFb,2)mΓ1(p1) + T5(−smpFb,4)mΓ2(p1) + T5(sm2
pFb,4)mΓ1(p1)

+ T5(2sG0(p))gbΓ2(p1) + T5(−2smpG0(p))gbΓ1(p1) + T5(−2smpG1(p))gbΓ2(p1)

+ T5(2sm2
pG1(p))gbΓ1(p1) + T7(sFb,2)mΓ2(p1) + T7(−smpFb,2)mΓ1(p1)

+ T7(−smpFb,4)mΓ2(p1) + T7(sm2
pFb,4)mΓ1(p1) + T7(2sG0(p))gbΓ2(p1)

+ T7(−2smpG0(p))gbΓ1(p1) + T7(−2smpG1(p))gbΓ2(p1) + T7(2sm2
pG1(p))gbΓ1(p1)

+ T8Fb,1mΓ2(p1) + T8(−mpFb,1)mΓ1(p1) + T8(−mpFb,3)mΓ2(p1)

+ T8(m2
pFb,3)mΓ1(p1) + T8(−2mpG0(p))gbΓ2(p1) + T8(2m2

pG0(p))gbΓ1(p1)

+ T8(2sG1(p))gbΓ2(p1) + T8(−2smpG1(p))gbΓ1(p1) + T3m(−sFb,2)mΓ2(p1)

+ T3m(smpFb,2)mΓ1(p1) + T3m(smpFb,4)mΓ2(p1) + T3m(−sm2
pFb,4)mΓ1(p1)

+ T3m(−2sG0(p))gbΓ2(p1) + T3m(2smpG0(p))gbΓ1(p1) + T3m(2smpG1(p))gbΓ2(p1)

+ T3m(−2sm2
pG1(p))gbΓ1(p1) + T3gb(−2sG0(p1))mΓ2(p1) + T3gb(2smpG0(p1))mΓ1(p1)

+ T3gb(2smpG1(p1))mΓ2(p1) + T3gb(−2sm2
pG1(p1))mΓ1(p1) + T5m(−Fb,1)mΓ2(p1)

+ T5m(mpFb,1)mΓ1(p1) + T5m(mpFb,3)mΓ2(p1) + T5m(−m2
pFb,3)mΓ1(p1)

+ T5m(2mpG0(p))gbΓ2(p1) + T5m(−2m2
pG0(p))gbΓ1(p1) + T5m(−2sG1(p))gbΓ2(p1)

+ T5m(2smpG1(p))gbΓ1(p1) + T5gb(2mpG0(p1))mΓ2(p1)

+ T5gb(−2m2
pG0(p1))mΓ1(p1) + T5gb(−2m2

pG1(p1))mΓ2(p1)

+ T5gb(2m3
pG1(p1))mΓ1(p1),

Spb,B = T3(−sFb,5)Γ4(p1) + T3(smpFb,5)Γ2(p1) + T3(smpFb,5)Γ3(p1)

+ T3(−sm2
pFb,5)Γ1(p1) + T3(smpFb,8)Γ4(p1) + T3(−sm2

pFb,8)Γ2(p1)

+ T3(−sm2
pFb,8)Γ3(p1) + T3(sm3

pFb,8)Γ1(p1) + T5(−sFb,7)Γ4(p1)

+ T5(smpFb,7)Γ2(p1) + T5(smpFb,7)Γ3(p1) + T5(−sm2
pFb,7)Γ1(p1)

+ T5(smpFb,11)Γ4(p1) + T5(−sm2
pFb,11)Γ2(p1) + T5(−sm2

pFb,11)Γ3(p1)

+ T5(sm3
pFb,11)Γ1(p1) + T7(−sFb,7)Γ4(p1) + T7(smpFb,7)Γ2(p1)

+ T7(smpFb,7)Γ3(p1) + T7(−sm2
pFb,7)Γ1(p1) + T7(smpFb,11)Γ4(p1)

+ T7(−sm2
pFb,11)Γ2(p1) + T7(−sm2

pFb,11)Γ3(p1) + T7(sm3
pFb,11)Γ1(p1)

+ T8(−Fb,5)Γ4(p1) + T8(mpFb,5)Γ2(p1) + T8(mpFb,5)Γ3(p1)

+ T8(−m2
pFb,5)Γ1(p1) + T8(mpFb,8)Γ4(p1) + T8(−m2

pFb,8)Γ2(p1)

+ T8(−m2
pFb,8)Γ3(p1) + T8(m3

pFb,8)Γ1(p1) + T3m(sFb,7)Γ4(p1)
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+ T3m(−smpFb,7)Γ2(p1) + T3m(−smpFb,7)Γ3(p1) + T3m(sm2
pFb,7)Γ1(p1)

+ T3m(−smpFb,11)Γ4(p1) + T3m(sm2
pFb,11)Γ2(p1)

+ T3m(sm2
pFb,11)Γ3(p1) + T3m(−sm3

pFb,11)Γ1(p1) + T3(sFb,5)mΓ2(p1)

+ T3(−smpFb,5)mΓ1(p1) + T3(−smpFb,8)mΓ2(p1) + T3(sm2
pFb,8)mΓ1(p1)

+ T3(−2sG0(p))gbΓ2(p1) + T3(2smpG0(p))gbΓ1(p1) + T5mFb,5Γ4(p1)

+ T5m(−mpFb,5)Γ2(p1) + T5m(−mpFb,5)Γ3(p1) + T5m(m2
pFb,5)Γ1(p1)

+ T5m(−mpFb,8)Γ4(p1) + T5m(m2
pFb,8)Γ2(p1) + T5m(m2

pFb,8)Γ3(p1)

+ T5m(−m3
pFb,8)Γ1(p1) + T5(2IM )gbΓ2(p1) + T5gb(−2G0(p1))Γ4(p1)

+ T5gb(2mpG0(p1))Γ2(p1) + T5gb(2mpG0(p1))Γ3(p1)

+ T5gb(−2m2
pG0(p1))Γ1(p1) + T5gb(2mpG1(p1))Γ4(p1)

+ T5gb(−2m2
pG1(p1))Γ2(p1) + T5gb(−2m2

pG1(p1))Γ3(p1)

+ T5gb(2m3
pG1(p1))Γ1(p1) + T5(−2IMmp)gbΓ1(p1) + T5(sFb,7)mΓ2(p1)

+ T5(−smpFb,7)mΓ1(p1) + T5(−smpFb,11)mΓ2(p1)

+ T5(sm2
pFb,11)mΓ1(p1) + T5(−2sG1(p))gbΓ2(p1)

+ T5(2smpG1(p))gbΓ1(p1) + T7(sFb,7)mΓ2(p1) + T7(−smpFb,7)mΓ1(p1)

+ T7(−smpFb,11)mΓ2(p1) + T7(sm2
pFb,11)mΓ1(p1)

+ T7(−2sG1(p))gbΓ2(p1) + T7(2smpG1(p))gbΓ1(p1) + T8Fb,5mΓ2(p1)

+ T8(−mpFb,5)mΓ1(p1) + T8(−mpFb,8)mΓ2(p1) + T8(m2
pFb,8)mΓ1(p1)

+ T8(−2G0(p))gbΓ2(p1) + T8(2mpG0(p))gbΓ1(p1) + T3m(−sFb,7)mΓ2(p1)
+ T3m(smpFb,7)mΓ1(p1) + T3m(smpFb,11)mΓ2(p1)

+ T3m(−sm2
pFb,11)mΓ1(p1) + T3m(2sG1(p))gbΓ2(p1)

+ T3m(−2smpG1(p))gbΓ1(p1) + T5m(−Fb,5)mΓ2(p1)
+ T5m(mpFb,5)mΓ1(p1) + T5m(mpFb,8)mΓ2(p1)

+ T5m(−m2
pFb,8)mΓ1(p1) + T5m(2G0(p))gbΓ2(p1)

+ T5m(−2mpG0(p))gbΓ1(p1) + T5gb(2G0(p1))mΓ2(p1)
+ T5gb(−2mpG0(p1))mΓ1(p1) + T5gb(−2mpG1(p1))mΓ2(p1)

+ T5gb(2m2
pG1(p1))mΓ1(p1),

Sp1b,B = T3(−sFb,6)Γ4(p1) + T3(smpFb,6)Γ2(p1) + T3(smpFb,6)Γ3(p1)

+ T3(−sm2
pFb,6)Γ1(p1) + T3(smpFb,10)Γ4(p1)

+ T3(−sm2
pFb,10)Γ2(p1) + T3(−sm2

pFb,10)Γ3(p1)

+ T3(sm3
pFb,10)Γ1(p1) + T5(−sFb,9)Γ4(p1) + T5(smpFb,9)Γ2(p1)

+ T5(smpFb,9)Γ3(p1) + T5(−sm2
pFb,9)Γ1(p1)

+ T5(smpFb,12)Γ4(p1) + T5(−sm2
pFb,12)Γ2(p1)
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+ T5(−sm2
pFb,12)Γ3(p1) + T5(sm3

pFb,12)Γ1(p1)

+ T7(−sFb,9)Γ4(p1) + T7(smpFb,9)Γ2(p1) + T7(smpFb,9)Γ3(p1)

+ T7(−sm2
pFb,9)Γ1(p1) + T7(smpFb,12)Γ4(p1)

+ T7(−sm2
pFb,12)Γ2(p1) + T7(−sm2

pFb,12)Γ3(p1)

+ T7(sm3
pFb,12)Γ1(p1) + T8(−Fb,6)Γ4(p1)

+ T8(mpFb,6)Γ2(p1) + T8(mpFb,6)Γ3(p1)

+ T8(−m2
pFb,6)Γ1(p1) + T8(mpFb,10)Γ4(p1)

+ T8(−m2
pFb,10)Γ2(p1) + T8(−m2

pFb,10)Γ3(p1)

+ T8(m3
pFb,10)Γ1(p1) + T3m(sFb,9)Γ4(p1)

+ T3m(−smpFb,9)Γ2(p1) + T3m(−smpFb,9)Γ3(p1)

+ T3m(sm2
pFb,9)Γ1(p1) + T3m(−smpFb,12)Γ4(p1)

+ T3m(sm2
pFb,12)Γ2(p1) + T3m(sm2

pFb,12)Γ3(p1)

+ T3m(−sm3
pFb,12)Γ1(p1) + T3(sFb,6)mΓ2(p1)

+ T3(−smpFb,6)mΓ1(p1) + T3(−smpFb,10)mΓ2(p1)

+ T3(sm2
pFb,10)mΓ1(p1) + T3(−2sG0(p))gbΓ2(p1)

+ T3(2smpG0(p))gbΓ1(p1) + T5mFb,6Γ4(p1)
+ T5m(−mpFb,6)Γ2(p1) + T5m(−mpFb,6)Γ3(p1)

+ T5m(m2
pFb,6)Γ1(p1) + T5m(−mpFb,10)Γ4(p1)

+ T5m(m2
pFb,10)Γ2(p1) + T5m(m2

pFb,10)Γ3(p1)

+ T5m(−m3
pFb,10)Γ1(p1) + T5(2IM )gbΓ2(p1)

+ T5gb(−2G0(p1))Γ4(p1) + T5gb(2mpG0(p1))Γ2(p1)

+ T5gb(2mpG0(p1))Γ3(p1) + T5gb(−2m2
pG0(p1))Γ1(p1)

+ T5gb(2mpG1(p1))Γ4(p1) + T5gb(−2m2
pG1(p1))Γ2(p1)

+ T5gb(−2m2
pG1(p1))Γ3(p1) + T5gb(2m3

pG1(p1))Γ1(p1)

+ T5(−2IMmp)gbΓ1(p1) + T5(sFb,9)mΓ2(p1)
+ T5(−smpFb,9)mΓ1(p1) + T5(−smpFb,12)mΓ2(p1)

+ T5(sm2
pFb,12)mΓ1(p1) + T5(−2sG1(p))gbΓ2(p1)

+ T5(2smpG1(p))gbΓ1(p1) + T7(sFb,9)mΓ2(p1)
+ T7(−smpFb,9)mΓ1(p1) + T7(−smpFb,12)mΓ2(p1)

+ T7(sm2
pFb,12)mΓ1(p1) + T7(−2sG1(p))gbΓ2(p1)

+ T7(2smpG1(p))gbΓ1(p1) + T8Fb,6mΓ2(p1)
+ T8(−mpFb,6)mΓ1(p1) + T8(−mpFb,10)mΓ2(p1)

+ T8(m2
pFb,10)mΓ1(p1) + T8(−2G0(p))gbΓ2(p1)

+ T8(2mpG0(p))gbΓ1(p1) + T3m(−sFb,9)mΓ2(p1)
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+ T3m(smpFb,9)mΓ1(p1) + T3m(smpFb,12)mΓ2(p1)

+ T3m(−sm2
pFb,12)mΓ1(p1) + T3m(2sG1(p))gbΓ2(p1)

+ T3m(−2smpG1(p))gbΓ1(p1) + T5m(−Fb,6)mΓ2(p1)
+ T5m(mpFb,6)mΓ1(p1) + T5m(mpFb,10)mΓ2(p1)

+ T5m(−m2
pFb,10)mΓ1(p1) + T5m(2G0(p))gbΓ2(p1)

+ T5m(−2mpG0(p))gbΓ1(p1) + T5gb(2G0(p1))mΓ2(p1)
+ T5gb(−2mpG0(p1))mΓ1(p1) + T5gb(−2mpG1(p1))mΓ2(p1)

+ T5gb(2m2
pG1(p1))mΓ1(p1),

S
/qγ

b,B = T1(−sFb,1)Γ4(p1) + T1(smpFb,1)Γ2(p1)

+ T1(smpFb,1)Γ3(p1) + T1(−sm2
pFb,1)Γ1(p1)

+ T1(smpFb,3)Γ4(p1) + T1(−sm2
pFb,3)Γ2(p1)

+ T1(−sm2
pFb,3)Γ3(p1) + T1(sm3

pFb,3)Γ1(p1)

+ T2(−sFb,2)Γ4(p1) + T2(smpFb,2)Γ2(p1)

+ T2(smpFb,2)Γ3(p1) + T2(−sm2
pFb,2)Γ1(p1)

+ T2(smpFb,4)Γ4(p1) + T2(−sm2
pFb,4)Γ2(p1)

+ T2(−sm2
pFb,4)Γ3(p1) + T2(sm3

pFb,4)Γ1(p1)

+ T4(−sFb,2)Γ4(p1) + T4(smpFb,2)Γ2(p1)

+ T4(smpFb,2)Γ3(p1) + T4(−sm2
pFb,2)Γ1(p1)

+ T4(smpFb,4)Γ4(p1) + T4(−sm2
pFb,4)Γ2(p1)

+ T4(−sm2
pFb,4)Γ3(p1) + T4(sm3

pFb,4)Γ1(p1)

+ T6(−Fb,1)Γ4(p1) + T6(mpFb,1)Γ2(p1) + T6(mpFb,1)Γ3(p1)

+ T6(−m2
pFb,1)Γ1(p1) + T6(mpFb,3)Γ4(p1)

+ T6(−m2
pFb,3)Γ2(p1) + T6(−m2

pFb,3)Γ3(p1)

+ T6(m3
pFb,3)Γ1(p1) + T1m(sFb,2)Γ4(p1)

+ T1m(−smpFb,2)Γ2(p1) + T1m(−smpFb,2)Γ3(p1)

+ T1m(sm2
pFb,2)Γ1(p1) + T1m(−smpFb,4)Γ4(p1)

+ T1m(sm2
pFb,4)Γ2(p1) + T1m(sm2

pFb,4)Γ3(p1)

+ T1m(−sm3
pFb,4)Γ1(p1) + T1(−2sIM )gbΓ2(p1)

+ T1gb(2sG0(p1))Γ4(p1) + T1gb(−2smpG0(p1))Γ2(p1)

+ T1gb(−2smpG0(p1))Γ3(p1) + T1gb(2sm2
pG0(p1))Γ1(p1)

+ T1gb(−2smpG1(p1))Γ4(p1) + T1gb(2sm2
pG1(p1))Γ2(p1)

+ T1gb(2sm2
pG1(p1))Γ3(p1) + T1gb(−2sm3

pG1(p1))Γ1(p1)

+ T1(2sIMmp)gbΓ1(p1) + T1(sFb,1)mΓ2(p1)
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+ T1(−smpFb,1)mΓ1(p1) + T1(−smpFb,3)mΓ2(p1)

+ T1(sm2
pFb,3)mΓ1(p1) + T1(−2smpG0(p))gbΓ2(p1)

+ T1(2sm2
pG0(p))gbΓ1(p1) + T1(2s2G1(p))gbΓ2(p1)

+ T1(−2s2mpG1(p))gbΓ1(p1) + T2mFb,1Γ4(p1)
+ T2m(−mpFb,1)Γ2(p1) + T2m(−mpFb,1)Γ3(p1)

+ T2m(m2
pFb,1)Γ1(p1) + T2m(−mpFb,3)Γ4(p1)

+ T2m(m2
pFb,3)Γ2(p1) + T2m(m2

pFb,3)Γ3(p1)

+ T2m(−m3
pFb,3)Γ1(p1) + T2gb(−2mpG0(p1))Γ4(p1)

+ T2gb(2m2
pG0(p1))Γ2(p1) + T2gb(2m2

pG0(p1))Γ3(p1)

+ T2gb(−2m3
pG0(p1))Γ1(p1) + T2gb(2m2

pG1(p1))Γ4(p1)

+ T2gb(−2m3
pG1(p1))Γ2(p1) + T2gb(−2m3

pG1(p1))Γ3(p1)

+ T2gb(2m4
pG1(p1))Γ1(p1) + T2(2IMmp)gbΓ2(p1)

+ T2(−2IMm2
p)gbΓ1(p1) + T2(sFb,2)mΓ2(p1)

+ T2(−smpFb,2)mΓ1(p1) + T2(−smpFb,4)mΓ2(p1)

+ T2(sm2
pFb,4)mΓ1(p1) + T2(2sG0(p))gbΓ2(p1)

+ T2(−2smpG0(p))gbΓ1(p1) + T2(−2smpG1(p))gbΓ2(p1)

+ T2(2sm2
pG1(p))gbΓ1(p1) + T4(sFb,2)mΓ2(p1)

+ T4(−smpFb,2)mΓ1(p1) + T4(−smpFb,4)mΓ2(p1)

+ T4(sm2
pFb,4)mΓ1(p1) + T4(2sG0(p))gbΓ2(p1)

+ T4(−2smpG0(p))gbΓ1(p1) + T4(−2smpG1(p))gbΓ2(p1)

+ T4(2sm2
pG1(p))gbΓ1(p1) + T6Fb,1mΓ2(p1)

+ T6(−mpFb,1)mΓ1(p1) + T6(−mpFb,3)mΓ2(p1)

+ T6(m2
pFb,3)mΓ1(p1) + T6(−2mpG0(p))gbΓ2(p1)

+ T6(2m2
pG0(p))gbΓ1(p1) + T6(2sG1(p))gbΓ2(p1)

+ T6(−2smpG1(p))gbΓ1(p1) + T1m(−sFb,2)mΓ2(p1)
+ T1m(smpFb,2)mΓ1(p1) + T1m(smpFb,4)mΓ2(p1)

+ T1m(−sm2
pFb,4)mΓ1(p1) + T1m(−2sG0(p))gbΓ2(p1)

+ T1m(2smpG0(p))gbΓ1(p1) + T1m(2smpG1(p))gbΓ2(p1)

+ T1m(−2sm2
pG1(p))gbΓ1(p1) + T1gb(−2sG0(p1))mΓ2(p1)

+ T1gb(2smpG0(p1))mΓ1(p1) + T1gb(2smpG1(p1))mΓ2(p1)

+ T1gb(−2sm2
pG1(p1))mΓ1(p1) + T2m(−Fb,1)mΓ2(p1)

+ T2m(mpFb,1)mΓ1(p1) + T2m(mpFb,3)mΓ2(p1)

+ T2m(−m2
pFb,3)mΓ1(p1) + T2m(2mpG0(p))gbΓ2(p1)
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+ T2m(−2m2
pG0(p))gbΓ1(p1) + T2m(−2sG1(p))gbΓ2(p1)

+ T2m(2smpG1(p))gbΓ1(p1) + T2gb(2mpG0(p1))mΓ2(p1)

+ T2gb(−2m2
pG0(p1))mΓ1(p1) + T2gb(−2m2

pG1(p1))mΓ2(p1)

+ T2gb(2m3
pG1(p1))mΓ1(p1),

S
/pγ

b,B = T3(−sFb,2)Γ4(p1) + T3(smpFb,2)Γ2(p1)+

T3(smpFb,2)Γ3(p1) + T3(−sm2
pFb,2)Γ1(p1)+

T3(smpFb,4)Γ4(p1) + T3(−sm2
pFb,4)Γ2(p1)+

T3(−sm2
pFb,4)Γ3(p1) + T3(sm3

pFb,4)Γ1(p1)+

T5(−Fb,1)Γ4(p1) + T5(mpFb,1)Γ2(p1) + T5(mpFb,1)Γ3(p1)

+ T5(−m2
pFb,1)Γ1(p1) + T5(mpFb,3)Γ4(p1)

+ T5(−m2
pFb,3)Γ2(p1) + T5(−m2

pFb,3)Γ3(p1)

+ T5(m3
pFb,3)Γ1(p1) + T7(−Fb,1)Γ4(p1)

+ T7(mpFb,1)Γ2(p1) + T7(mpFb,1)Γ3(p1)

+ T7(−m2
pFb,1)Γ1(p1) + T7(mpFb,3)Γ4(p1)

+ T7(−m2
pFb,3)Γ2(p1) + T7(−m2

pFb,3)Γ3(p1)

+ T7(m3
pFb,3)Γ1(p1) + T8(−Fb,2)Γ4(p1)

+ T8(mpFb,2)Γ2(p1) + T8(mpFb,2)Γ3(p1)

+ T8(−m2
pFb,2)Γ1(p1) + T8(mpFb,4)Γ4(p1)

+ T8(−m2
pFb,4)Γ2(p1) + T8(−m2

pFb,4)Γ3(p1)

+ T8(m3
pFb,4)Γ1(p1) + T3mFb,1Γ4(p1)

+ T3m(−mpFb,1)Γ2(p1) + T3m(−mpFb,1)Γ3(p1)

+ T3m(m2
pFb,1)Γ1(p1) + T3m(−mpFb,3)Γ4(p1)

+ T3m(m2
pFb,3)Γ2(p1) + T3m(m2

pFb,3)Γ3(p1)

+ T3m(−m3
pFb,3)Γ1(p1) + T3gb(−2mpG0(p1))Γ4(p1)

+ T3gb(2m2
pG0(p1))Γ2(p1) + T3gb(2m2

pG0(p1))Γ3(p1)

+ T3gb(−2m3
pG0(p1))Γ1(p1) + T3gb(2m2

pG1(p1))Γ4(p1)

+ T3gb(−2m3
pG1(p1))Γ2(p1) + T3gb(−2m3

pG1(p1))Γ3(p1)

+ T3gb(2m4
pG1(p1))Γ1(p1) + T3(2IMmp)gbΓ2(p1)

+ T3(−2IMm2
p)gbΓ1(p1) + T3(sFb,2)mΓ2(p1)

+ T3(−smpFb,2)mΓ1(p1) + T3(−smpFb,4)mΓ2(p1)

+ T3(sm2
pFb,4)mΓ1(p1) + T3(2sG0(p))gbΓ2(p1)

+ T3(−2smpG0(p))gbΓ1(p1) + T3(−2smpG1(p))gbΓ2(p1)

+ T3(2sm2
pG1(p))gbΓ1(p1) + T5mFb,2Γ4(p1)
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+ T5m(−mpFb,2)Γ2(p1) + T5m(−mpFb,2)Γ3(p1)

+ T5m(m2
pFb,2)Γ1(p1) + T5m(−mpFb,4)Γ4(p1)

+ T5m(m2
pFb,4)Γ2(p1) + T5m(m2

pFb,4)Γ3(p1)

+ T5m(−m3
pFb,4)Γ1(p1) + T5(−2IM )gbΓ2(p1)

+ T5gb(2G0(p1))Γ4(p1) + T5gb(−2mpG0(p1))Γ2(p1)

+ T5gb(−2mpG0(p1))Γ3(p1) + T5gb(2m2
pG0(p1))Γ1(p1)

+ T5gb(−2mpG1(p1))Γ4(p1) + T5gb(2m2
pG1(p1))Γ2(p1)

+ T5gb(2m2
pG1(p1))Γ3(p1) + T5gb(−2m3

pG1(p1))Γ1(p1)

+ T5(2IMmp)gbΓ1(p1) + T5Fb,1mΓ2(p1)
+ T5(−mpFb,1)mΓ1(p1) + T5(−mpFb,3)mΓ2(p1)

+ T5(m2
pFb,3)mΓ1(p1) + T5(−2mpG0(p))gbΓ2(p1)

+ T5(2m2
pG0(p))gbΓ1(p1) + T5(2sG1(p))gbΓ2(p1)

+ T5(−2smpG1(p))gbΓ1(p1) + T7Fb,1mΓ2(p1)
+ T7(−mpFb,1)mΓ1(p1) + T7(−mpFb,3)mΓ2(p1)

+ T7(m2
pFb,3)mΓ1(p1) + T7(−2mpG0(p))gbΓ2(p1)

+ T7(2m2
pG0(p))gbΓ1(p1) + T7(2sG1(p))gbΓ2(p1)

+ T7(−2smpG1(p))gbΓ1(p1) + T8Fb,2mΓ2(p1)
+ T8(−mpFb,2)mΓ1(p1) + T8(−mpFb,4)mΓ2(p1)

+ T8(m2
pFb,4)mΓ1(p1) + T8(2G0(p))gbΓ2(p1)

+ T8(−2mpG0(p))gbΓ1(p1) + T8(−2mpG1(p))gbΓ2(p1)

+ T8(2m2
pG1(p))gbΓ1(p1) + T3m(−Fb,1)mΓ2(p1)

+ T3m(mpFb,1)mΓ1(p1) + T3m(mpFb,3)mΓ2(p1)

+ T3m(−m2
pFb,3)mΓ1(p1) + T3m(2mpG0(p))gbΓ2(p1)

+ T3m(−2m2
pG0(p))gbΓ1(p1) + T3m(−2sG1(p))gbΓ2(p1)

+ T3m(2smpG1(p))gbΓ1(p1) + T3gb(2mpG0(p1))mΓ2(p1)

+ T3gb(−2m2
pG0(p1))mΓ1(p1) + T3gb(−2m2

pG1(p1))mΓ2(p1)

+ T3gb(2m3
pG1(p1))mΓ1(p1) + T5m(−Fb,2)mΓ2(p1)

+ T5m(mpFb,2)mΓ1(p1) + T5m(mpFb,4)mΓ2(p1)

+ T5m(−m2
pFb,4)mΓ1(p1) + T5m(−2G0(p))gbΓ2(p1)

+ T5m(2mpG0(p))gbΓ1(p1) + T5m(2mpG1(p))gbΓ2(p1)

+ T5m(−2m2
pG1(p))gbΓ1(p1) + T5gb(−2G0(p1))mΓ2(p1)

+ T5gb(2mpG0(p1))mΓ1(p1) + T5gb(2mpG1(p1))mΓ2(p1)

+ T5gb(−2m2
pG1(p1))mΓ1(p1),
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S
/q/pγ

b,B = T1(−sFb,2)Γ4(p1) + T1(smpFb,2)Γ2(p1)

+ T1(smpFb,2)Γ3(p1) + T1(−sm2
pFb,2)Γ1(p1)

+ T1(smpFb,4)Γ4(p1) + T1(−sm2
pFb,4)Γ2(p1)

+ T1(−sm2
pFb,4)Γ3(p1) + T1(sm3

pFb,4)Γ1(p1)

+ T2(−Fb,1)Γ4(p1) + T2(mpFb,1)Γ2(p1)

+ T2(mpFb,1)Γ3(p1) + T2(−m2
pFb,1)Γ1(p1)

+ T2(mpFb,3)Γ4(p1) + T2(−m2
pFb,3)Γ2(p1)

+ T2(−m2
pFb,3)Γ3(p1) + T2(m3

pFb,3)Γ1(p1)

+ T4(−Fb,1)Γ4(p1) + T4(mpFb,1)Γ2(p1)

+ T4(mpFb,1)Γ3(p1) + T4(−m2
pFb,1)Γ1(p1)

+ T4(mpFb,3)Γ4(p1) + T4(−m2
pFb,3)Γ2(p1)

+ T4(−m2
pFb,3)Γ3(p1) + T4(m3

pFb,3)Γ1(p1)

+ T6(−Fb,2)Γ4(p1) + T6(mpFb,2)Γ2(p1)

+ T6(mpFb,2)Γ3(p1) + T6(−m2
pFb,2)Γ1(p1)

+ T6(mpFb,4)Γ4(p1) + T6(−m2
pFb,4)Γ2(p1)

+ T6(−m2
pFb,4)Γ3(p1) + T6(m3

pFb,4)Γ1(p1)

+ T1mFb,1Γ4(p1) + T1m(−mpFb,1)Γ2(p1)

+ T1m(−mpFb,1)Γ3(p1) + T1m(m2
pFb,1)Γ1(p1)

+ T1m(−mpFb,3)Γ4(p1) + T1m(m2
pFb,3)Γ2(p1)

+ T1m(m2
pFb,3)Γ3(p1) + T1m(−m3

pFb,3)Γ1(p1)

+ T1gb(−2mpG0(p1))Γ4(p1) + T1gb(2m2
pG0(p1))Γ2(p1)

+ T1gb(2m2
pG0(p1))Γ3(p1) + T1gb(−2m3

pG0(p1))Γ1(p1)

+ T1gb(2m2
pG1(p1))Γ4(p1) + T1gb(−2m3

pG1(p1))Γ2(p1)

+ T1gb(−2m3
pG1(p1))Γ3(p1) + T1gb(2m4

pG1(p1))Γ1(p1)

+ T1(2IMmp)gbΓ2(p1) + T1(−2IMm2
p)gbΓ1(p1)

+ T1(sFb,2)mΓ2(p1) + T1(−smpFb,2)mΓ1(p1)

+ T1(−smpFb,4)mΓ2(p1) + T1(sm2
pFb,4)mΓ1(p1)

+ T1(2sG0(p))gbΓ2(p1) + T1(−2smpG0(p))gbΓ1(p1)

+ T1(−2smpG1(p))gbΓ2(p1) + T1(2sm2
pG1(p))gbΓ1(p1)

+ T2mFb,2Γ4(p1) + T2m(−mpFb,2)Γ2(p1)

+ T2m(−mpFb,2)Γ3(p1) + T2m(m2
pFb,2)Γ1(p1)

+ T2m(−mpFb,4)Γ4(p1) + T2m(m2
pFb,4)Γ2(p1)

+ T2m(m2
pFb,4)Γ3(p1) + T2m(−m3

pFb,4)Γ1(p1)
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+ T2(−2IM )gbΓ2(p1) + T2gb(2G0(p1))Γ4(p1)
+ T2gb(−2mpG0(p1))Γ2(p1) + T2gb(−2mpG0(p1))Γ3(p1)

+ T2gb(2m2
pG0(p1))Γ1(p1) + T2gb(−2mpG1(p1))Γ4(p1)

+ T2gb(2m2
pG1(p1))Γ2(p1) + T2gb(2m2

pG1(p1))Γ3(p1)

+ T2gb(−2m3
pG1(p1))Γ1(p1) + T2(2IMmp)gbΓ1(p1)

+ T2Fb,1mΓ2(p1) + T2(−mpFb,1)mΓ1(p1)

+ T2(−mpFb,3)mΓ2(p1) + T2(m2
pFb,3)mΓ1(p1)

+ T2(−2mpG0(p))gbΓ2(p1) + T2(2m2
pG0(p))gbΓ1(p1)

+ T2(2sG1(p))gbΓ2(p1) + T2(−2smpG1(p))gbΓ1(p1)
+ T4Fb,1mΓ2(p1) + T4(−mpFb,1)mΓ1(p1)

+ T4(−mpFb,3)mΓ2(p1) + T4(m2
pFb,3)mΓ1(p1)

+ T4(−2mpG0(p))gbΓ2(p1) + T4(2m2
pG0(p))gbΓ1(p1)

+ T4(2sG1(p))gbΓ2(p1) + T4(−2smpG1(p))gbΓ1(p1)
+ T6Fb,2mΓ2(p1) + T6(−mpFb,2)mΓ1(p1)

+ T6(−mpFb,4)mΓ2(p1) + T6(m2
pFb,4)mΓ1(p1)

+ T6(2G0(p))gbΓ2(p1) + T6(−2mpG0(p))gbΓ1(p1)

+ T6(−2mpG1(p))gbΓ2(p1) + T6(2m2
pG1(p))gbΓ1(p1)

+ T1m(−Fb,1)mΓ2(p1) + T1m(mpFb,1)mΓ1(p1)

+ T1m(mpFb,3)mΓ2(p1) + T1m(−m2
pFb,3)mΓ1(p1)

+ T1m(2mpG0(p))gbΓ2(p1) + T1m(−2m2
pG0(p))gbΓ1(p1)

+ T1m(−2sG1(p))gbΓ2(p1) + T1m(2smpG1(p))gbΓ1(p1)

+ T1gb(2mpG0(p1))mΓ2(p1) + T1gb(−2m2
pG0(p1))mΓ1(p1)

+ T1gb(−2m2
pG1(p1))mΓ2(p1) + T1gb(2m3

pG1(p1))mΓ1(p1)

+ T2m(−Fb,2)mΓ2(p1) + T2m(mpFb,2)mΓ1(p1)

+ T2m(mpFb,4)mΓ2(p1) + T2m(−m2
pFb,4)mΓ1(p1)

+ T2m(−2G0(p))gbΓ2(p1) + T2m(2mpG0(p))gbΓ1(p1)

+ T2m(2mpG1(p))gbΓ2(p1) + T2m(−2m2
pG1(p))gbΓ1(p1)

+ T2gb(−2G0(p1))mΓ2(p1) + T2gb(2mpG0(p1))mΓ1(p1)

+ T2gb(2mpG1(p1))mΓ2(p1) + T2gb(−2m2
pG1(p1))mΓ1(p1),

S
/qp

b,B = T1(−sFb,5)Γ4(p1) + T1(smpFb,5)Γ2(p1)

+ T1(smpFb,5)Γ3(p1) + T1(−sm2
pFb,5)Γ1(p1)

+ T1(smpFb,8)Γ4(p1) + T1(−sm2
pFb,8)Γ2(p1)

+ T1(−sm2
pFb,8)Γ3(p1) + T1(sm3

pFb,8)Γ1(p1)
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+ T2(−sFb,7)Γ4(p1) + T2(smpFb,7)Γ2(p1)

+ T2(smpFb,7)Γ3(p1) + T2(−sm2
pFb,7)Γ1(p1)

+ T2(smpFb,11)Γ4(p1) + T2(−sm2
pFb,11)Γ2(p1)

+ T2(−sm2
pFb,11)Γ3(p1) + T2(sm3

pFb,11)Γ1(p1)

+ T4(−sFb,7)Γ4(p1) + T4(smpFb,7)Γ2(p1)

+ T4(smpFb,7)Γ3(p1) + T4(−sm2
pFb,7)Γ1(p1)

+ T4(smpFb,11)Γ4(p1) + T4(−sm2
pFb,11)Γ2(p1)

+ T4(−sm2
pFb,11)Γ3(p1) + T4(sm3

pFb,11)Γ1(p1)

+ T6(−Fb,5)Γ4(p1) + T6(mpFb,5)Γ2(p1)

+ T6(mpFb,5)Γ3(p1) + T6(−m2
pFb,5)Γ1(p1)

+ T6(mpFb,8)Γ4(p1) + T6(−m2
pFb,8)Γ2(p1)

+ T6(−m2
pFb,8)Γ3(p1) + T6(m3

pFb,8)Γ1(p1)

+ T1m(sFb,7)Γ4(p1) + T1m(−smpFb,7)Γ2(p1)

+ T1m(−smpFb,7)Γ3(p1) + T1m(sm2
pFb,7)Γ1(p1)

+ T1m(−smpFb,11)Γ4(p1) + T1m(sm2
pFb,11)Γ2(p1)

+ T1m(sm2
pFb,11)Γ3(p1) + T1m(−sm3

pFb,11)Γ1(p1)

+ T1(sFb,5)mΓ2(p1) + T1(−smpFb,5)mΓ1(p1)

+ T1(−smpFb,8)mΓ2(p1) + T1(sm2
pFb,8)mΓ1(p1)

+ T1(−2sG0(p))gbΓ2(p1) + T1(2smpG0(p))gbΓ1(p1)
+ T2mFb,5Γ4(p1) + T2m(−mpFb,5)Γ2(p1)

+ T2m(−mpFb,5)Γ3(p1) + T2m(m2
pFb,5)Γ1(p1)

+ T2m(−mpFb,8)Γ4(p1) + T2m(m2
pFb,8)Γ2(p1)

+ T2m(m2
pFb,8)Γ3(p1) + T2m(−m3

pFb,8)Γ1(p1)

+ T2(2IM )gbΓ2(p1) + T2gb(−2G0(p1))Γ4(p1)
+ T2gb(2mpG0(p1))Γ2(p1) + T2gb(2mpG0(p1))Γ3(p1)

+ T2gb(−2m2
pG0(p1))Γ1(p1) + T2gb(2mpG1(p1))Γ4(p1)

+ T2gb(−2m2
pG1(p1))Γ2(p1) + T2gb(−2m2

pG1(p1))Γ3(p1)

+ T2gb(2m3
pG1(p1))Γ1(p1) + T2(−2IMmp)gbΓ1(p1)

+ T2(sFb,7)mΓ2(p1) + T2(−smpFb,7)mΓ1(p1)

+ T2(−smpFb,11)mΓ2(p1) + T2(sm2
pFb,11)mΓ1(p1)

+ T2(−2sG1(p))gbΓ2(p1) + T2(2smpG1(p))gbΓ1(p1)
+ T4(sFb,7)mΓ2(p1) + T4(−smpFb,7)mΓ1(p1)

+ T4(−smpFb,11)mΓ2(p1) + T4(sm2
pFb,11)mΓ1(p1)
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+ T4(−2sG1(p))gbΓ2(p1) + T4(2smpG1(p))gbΓ1(p1)
+ T6Fb,5mΓ2(p1) + T6(−mpFb,5)mΓ1(p1)

+ T6(−mpFb,8)mΓ2(p1) + T6(m2
pFb,8)mΓ1(p1)

+ T6(−2G0(p))gbΓ2(p1) + T6(2mpG0(p))gbΓ1(p1)
+ T1m(−sFb,7)mΓ2(p1) + T1m(smpFb,7)mΓ1(p1)

+ T1m(smpFb,11)mΓ2(p1) + T1m(−sm2
pFb,11)mΓ1(p1)

+ T1m(2sG1(p))gbΓ2(p1) + T1m(−2smpG1(p))gbΓ1(p1)
+ T2m(−Fb,5)mΓ2(p1) + T2m(mpFb,5)mΓ1(p1)

+ T2m(mpFb,8)mΓ2(p1) + T2m(−m2
pFb,8)mΓ1(p1)

+ T2m(2G0(p))gbΓ2(p1) + T2m(−2mpG0(p))gbΓ1(p1)
+ T2gb(2G0(p1))mΓ2(p1) + T2gb(−2mpG0(p1))mΓ1(p1)

+ T2gb(−2mpG1(p1))mΓ2(p1) + T2gb(2m2
pG1(p1))mΓ1(p1),

S
/pp

b,B = T3(−sFb,7)Γ4(p1) + T3(smpFb,7)Γ2(p1)

+ T3(smpFb,7)Γ3(p1) + T3(−sm2
pFb,7)Γ1(p1)

+ T3(smpFb,11)Γ4(p1) + T3(−sm2
pFb,11)Γ2(p1)

+ T3(−sm2
pFb,11)Γ3(p1) + T3(sm3

pFb,11)Γ1(p1)

+ T5(−Fb,5)Γ4(p1) + T5(mpFb,5)Γ2(p1)

+ T5(mpFb,5)Γ3(p1) + T5(−m2
pFb,5)Γ1(p1)

+ T5(mpFb,8)Γ4(p1) + T5(−m2
pFb,8)Γ2(p1)

+ T5(−m2
pFb,8)Γ3(p1) + T5(m3

pFb,8)Γ1(p1)

+ T7(−Fb,5)Γ4(p1) + T7(mpFb,5)Γ2(p1)

+ T7(mpFb,5)Γ3(p1) + T7(−m2
pFb,5)Γ1(p1)

+ T7(mpFb,8)Γ4(p1) + T7(−m2
pFb,8)Γ2(p1)

+ T7(−m2
pFb,8)Γ3(p1) + T7(m3

pFb,8)Γ1(p1)

+ T8(−Fb,7)Γ4(p1) + T8(mpFb,7)Γ2(p1)

+ T8(mpFb,7)Γ3(p1) + T8(−m2
pFb,7)Γ1(p1)

+ T8(mpFb,11)Γ4(p1) + T8(−m2
pFb,11)Γ2(p1)

+ T8(−m2
pFb,11)Γ3(p1) + T8(m3

pFb,11)Γ1(p1)

+ T3mFb,5Γ4(p1) + T3m(−mpFb,5)Γ2(p1)

+ T3m(−mpFb,5)Γ3(p1) + T3m(m2
pFb,5)Γ1(p1)

+ T3m(−mpFb,8)Γ4(p1) + T3m(m2
pFb,8)Γ2(p1)

+ T3m(m2
pFb,8)Γ3(p1) + T3m(−m3

pFb,8)Γ1(p1)

+ T3(2IM )gbΓ2(p1) + T3gb(−2G0(p1))Γ4(p1)
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+ T3gb(2mpG0(p1))Γ2(p1) + T3gb(2mpG0(p1))Γ3(p1)

+ T3gb(−2m2
pG0(p1))Γ1(p1) + T3gb(2mpG1(p1))Γ4(p1)

+ T3gb(−2m2
pG1(p1))Γ2(p1) + T3gb(−2m2

pG1(p1))Γ3(p1)

+ T3gb(2m3
pG1(p1))Γ1(p1) + T3(−2IMmp)gbΓ1(p1)

+ T3(sFb,7)mΓ2(p1) + T3(−smpFb,7)mΓ1(p1)

+ T3(−smpFb,11)mΓ2(p1) + T3(sm2
pFb,11)mΓ1(p1)

+ T3(−2sG1(p))gbΓ2(p1) + T3(2smpG1(p))gbΓ1(p1)
+ T5mFb,7Γ4(p1) + T5m(−mpFb,7)Γ2(p1)

+ T5m(−mpFb,7)Γ3(p1) + T5m(m2
pFb,7)Γ1(p1)

+ T5m(−mpFb,11)Γ4(p1) + T5m(m2
pFb,11)Γ2(p1)

+ T5m(m2
pFb,11)Γ3(p1) + T5m(−m3

pFb,11)Γ1(p1)

+ T5Fb,5mΓ2(p1) + T5(−mpFb,5)mΓ1(p1)

+ T5(−mpFb,8)mΓ2(p1) + T5(m2
pFb,8)mΓ1(p1)

+ T5(−2G0(p))gbΓ2(p1) + T5(2mpG0(p))gbΓ1(p1)
+ T7Fb,5mΓ2(p1) + T7(−mpFb,5)mΓ1(p1)

+ T7(−mpFb,8)mΓ2(p1) + T7(m2
pFb,8)mΓ1(p1)

+ T7(−2G0(p))gbΓ2(p1) + T7(2mpG0(p))gbΓ1(p1)
+ T8Fb,7mΓ2(p1) + T8(−mpFb,7)mΓ1(p1)

+ T8(−mpFb,11)mΓ2(p1) + T8(m2
pFb,11)mΓ1(p1)

+ T8(−2G1(p))gbΓ2(p1) + T8(2mpG1(p))gbΓ1(p1)
+ T3m(−Fb,5)mΓ2(p1) + T3m(mpFb,5)mΓ1(p1)

+ T3m(mpFb,8)mΓ2(p1) + T3m(−m2
pFb,8)mΓ1(p1)

+ T3m(2G0(p))gbΓ2(p1) + T3m(−2mpG0(p))gbΓ1(p1)
+ T3gb(2G0(p1))mΓ2(p1) + T3gb(−2mpG0(p1))mΓ1(p1)

+ T3gb(−2mpG1(p1))mΓ2(p1) + T3gb(2m2
pG1(p1))mΓ1(p1)

+ T5m(−Fb,7)mΓ2(p1) + T5m(mpFb,7)mΓ1(p1)

+ T5m(mpFb,11)mΓ2(p1) + T5m(−m2
pFb,11)mΓ1(p1)

+ T5m(2G1(p))gbΓ2(p1) + T5m(−2mpG1(p))gbΓ1(p1),

S
/q/pp

b,B = T1(−sFb,7)Γ4(p1) + T1(smpFb,7)Γ2(p1)

+ T1(smpFb,7)Γ3(p1) + T1(−sm2
pFb,7)Γ1(p1)

+ T1(smpFb,11)Γ4(p1) + T1(−sm2
pFb,11)Γ2(p1)

+ T1(−sm2
pFb,11)Γ3(p1) + T1(sm3

pFb,11)Γ1(p1)

+ T2(−Fb,5)Γ4(p1) + T2(mpFb,5)Γ2(p1)

+ T2(mpFb,5)Γ3(p1) + T2(−m2
pFb,5)Γ1(p1)



D.2. DECOMPOSITION OF THE EXTENDED AMPLITUDE 109

+ T2(mpFb,8)Γ4(p1) + T2(−m2
pFb,8)Γ2(p1)

+ T2(−m2
pFb,8)Γ3(p1) + T2(m3

pFb,8)Γ1(p1)

+ T4(−Fb,5)Γ4(p1) + T4(mpFb,5)Γ2(p1)

+ T4(mpFb,5)Γ3(p1) + T4(−m2
pFb,5)Γ1(p1)

+ T4(mpFb,8)Γ4(p1) + T4(−m2
pFb,8)Γ2(p1)

+ T4(−m2
pFb,8)Γ3(p1) + T4(m3

pFb,8)Γ1(p1)

+ T6(−Fb,7)Γ4(p1) + T6(mpFb,7)Γ2(p1)

+ T6(mpFb,7)Γ3(p1) + T6(−m2
pFb,7)Γ1(p1)

+ T6(mpFb,11)Γ4(p1) + T6(−m2
pFb,11)Γ2(p1)

+ T6(−m2
pFb,11)Γ3(p1) + T6(m3

pFb,11)Γ1(p1)

+ T1mFb,5Γ4(p1) + T1m(−mpFb,5)Γ2(p1)

+ T1m(−mpFb,5)Γ3(p1) + T1m(m2
pFb,5)Γ1(p1)

+ T1m(−mpFb,8)Γ4(p1) + T1m(m2
pFb,8)Γ2(p1)

+ T1m(m2
pFb,8)Γ3(p1) + T1m(−m3

pFb,8)Γ1(p1)

+ T1(2IM )gbΓ2(p1) + T1gb(−2G0(p1))Γ4(p1)
+ T1gb(2mpG0(p1))Γ2(p1) + T1gb(2mpG0(p1))Γ3(p1)

+ T1gb(−2m2
pG0(p1))Γ1(p1) + T1gb(2mpG1(p1))Γ4(p1)

+ T1gb(−2m2
pG1(p1))Γ2(p1) + T1gb(−2m2

pG1(p1))Γ3(p1)

+ T1gb(2m3
pG1(p1))Γ1(p1) + T1(−2IMmp)gbΓ1(p1)

+ T1(sFb,7)mΓ2(p1) + T1(−smpFb,7)mΓ1(p1)

+ T1(−smpFb,11)mΓ2(p1) + T1(sm2
pFb,11)mΓ1(p1)

+ T1(−2sG1(p))gbΓ2(p1) + T1(2smpG1(p))gbΓ1(p1)
+ T2mFb,7Γ4(p1) + T2m(−mpFb,7)Γ2(p1)

+ T2m(−mpFb,7)Γ3(p1) + T2m(m2
pFb,7)Γ1(p1)

+ T2m(−mpFb,11)Γ4(p1) + T2m(m2
pFb,11)Γ2(p1)

+ T2m(m2
pFb,11)Γ3(p1) + T2m(−m3

pFb,11)Γ1(p1)

+ T2Fb,5mΓ2(p1) + T2(−mpFb,5)mΓ1(p1)

+ T2(−mpFb,8)mΓ2(p1) + T2(m2
pFb,8)mΓ1(p1)

+ T2(−2G0(p))gbΓ2(p1) + T2(2mpG0(p))gbΓ1(p1)
+ T4Fb,5mΓ2(p1) + T4(−mpFb,5)mΓ1(p1)

+ T4(−mpFb,8)mΓ2(p1) + T4(m2
pFb,8)mΓ1(p1)

+ T4(−2G0(p))gbΓ2(p1) + T4(2mpG0(p))gbΓ1(p1)
+ T6Fb,7mΓ2(p1) + T6(−mpFb,7)mΓ1(p1)

+ T6(−mpFb,11)mΓ2(p1) + T6(m2
pFb,11)mΓ1(p1)
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+ T6(−2G1(p))gbΓ2(p1) + T6(2mpG1(p))gbΓ1(p1)
+ T1m(−Fb,5)mΓ2(p1) + T1m(mpFb,5)mΓ1(p1)

+ T1m(mpFb,8)mΓ2(p1) + T1m(−m2
pFb,8)mΓ1(p1)

+ T1m(2G0(p))gbΓ2(p1) + T1m(−2mpG0(p))gbΓ1(p1)
+ T1gb(2G0(p1))mΓ2(p1) + T1gb(−2mpG0(p1))mΓ1(p1)

+ T1gb(−2mpG1(p1))mΓ2(p1) + T1gb(2m2
pG1(p1))mΓ1(p1)

+ T2m(−Fb,7)mΓ2(p1) + T2m(mpFb,7)mΓ1(p1)

+ T2m(mpFb,11)mΓ2(p1) + T2m(−m2
pFb,11)mΓ1(p1)

+ T2m(2G1(p))gbΓ2(p1) + T2m(−2mpG1(p))gbΓ1(p1),

S
/qp1
b,B = T1(−sFb,6)Γ4(p1) + T1(smpFb,6)Γ2(p1)

+ T1(smpFb,6)Γ3(p1) + T1(−sm2
pFb,6)Γ1(p1)

+ T1(smpFb,10)Γ4(p1) + T1(−sm2
pFb,10)Γ2(p1)

+ T1(−sm2
pFb,10)Γ3(p1) + T1(sm3

pFb,10)Γ1(p1)

+ T2(−sFb,9)Γ4(p1) + T2(smpFb,9)Γ2(p1)

+ T2(smpFb,9)Γ3(p1) + T2(−sm2
pFb,9)Γ1(p1)

+ T2(smpFb,12)Γ4(p1) + T2(−sm2
pFb,12)Γ2(p1)

+ T2(−sm2
pFb,12)Γ3(p1) + T2(sm3

pFb,12)Γ1(p1)

+ T4(−sFb,9)Γ4(p1) + T4(smpFb,9)Γ2(p1)

+ T4(smpFb,9)Γ3(p1) + T4(−sm2
pFb,9)Γ1(p1)

+ T4(smpFb,12)Γ4(p1) + T4(−sm2
pFb,12)Γ2(p1)

+ T4(−sm2
pFb,12)Γ3(p1) + T4(sm3

pFb,12)Γ1(p1)

+ T6(−Fb,6)Γ4(p1) + T6(mpFb,6)Γ2(p1)

+ T6(mpFb,6)Γ3(p1) + T6(−m2
pFb,6)Γ1(p1)

+ T6(mpFb,10)Γ4(p1) + T6(−m2
pFb,10)Γ2(p1)

+ T6(−m2
pFb,10)Γ3(p1) + T6(m3

pFb,10)Γ1(p1)

+ T1m(sFb,9)Γ4(p1) + T1m(−smpFb,9)Γ2(p1)

+ T1m(−smpFb,9)Γ3(p1) + T1m(sm2
pFb,9)Γ1(p1)

+ T1m(−smpFb,12)Γ4(p1) + T1m(sm2
pFb,12)Γ2(p1)

+ T1m(sm2
pFb,12)Γ3(p1) + T1m(−sm3

pFb,12)Γ1(p1)

+ T1(sFb,6)mΓ2(p1) + T1(−smpFb,6)mΓ1(p1)

+ T1(−smpFb,10)mΓ2(p1) + T1(sm2
pFb,10)mΓ1(p1)

+ T1(−2sG0(p))gbΓ2(p1) + T1(2smpG0(p))gbΓ1(p1)
+ T2mFb,6Γ4(p1) + T2m(−mpFb,6)Γ2(p1)
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+ T2m(−mpFb,6)Γ3(p1) + T2m(m2
pFb,6)Γ1(p1)

+ T2m(−mpFb,10)Γ4(p1) + T2m(m2
pFb,10)Γ2(p1)

+ T2m(m2
pFb,10)Γ3(p1) + T2m(−m3

pFb,10)Γ1(p1)

+ T2(2IM )gbΓ2(p1) + T2gb(−2G0(p1))Γ4(p1)
+ T2gb(2mpG0(p1))Γ2(p1) + T2gb(2mpG0(p1))Γ3(p1)

+ T2gb(−2m2
pG0(p1))Γ1(p1) + T2gb(2mpG1(p1))Γ4(p1)

+ T2gb(−2m2
pG1(p1))Γ2(p1) + T2gb(−2m2

pG1(p1))Γ3(p1)

+ T2gb(2m3
pG1(p1))Γ1(p1) + T2(−2IMmp)gbΓ1(p1)

+ T2(sFb,9)mΓ2(p1) + T2(−smpFb,9)mΓ1(p1)

+ T2(−smpFb,12)mΓ2(p1) + T2(sm2
pFb,12)mΓ1(p1)

+ T2(−2sG1(p))gbΓ2(p1) + T2(2smpG1(p))gbΓ1(p1)
+ T4(sFb,9)mΓ2(p1) + T4(−smpFb,9)mΓ1(p1)

+ T4(−smpFb,12)mΓ2(p1) + T4(sm2
pFb,12)mΓ1(p1)

+ T4(−2sG1(p))gbΓ2(p1) + T4(2smpG1(p))gbΓ1(p1)
+ T6Fb,6mΓ2(p1) + T6(−mpFb,6)mΓ1(p1)

+ T6(−mpFb,10)mΓ2(p1) + T6(m2
pFb,10)mΓ1(p1)

+ T6(−2G0(p))gbΓ2(p1) + T6(2mpG0(p))gbΓ1(p1)
+ T1m(−sFb,9)mΓ2(p1) + T1m(smpFb,9)mΓ1(p1)

+ T1m(smpFb,12)mΓ2(p1) + T1m(−sm2
pFb,12)mΓ1(p1)

+ T1m(2sG1(p))gbΓ2(p1) + T1m(−2smpG1(p))gbΓ1(p1)
+ T2m(−Fb,6)mΓ2(p1) + T2m(mpFb,6)mΓ1(p1)

+ T2m(mpFb,10)mΓ2(p1) + T2m(−m2
pFb,10)mΓ1(p1)

+ T2m(2G0(p))gbΓ2(p1) + T2m(−2mpG0(p))gbΓ1(p1)
+ T2gb(2G0(p1))mΓ2(p1) + T2gb(−2mpG0(p1))mΓ1(p1)

+ T2gb(−2mpG1(p1))mΓ2(p1) + T2gb(2m2
pG1(p1))mΓ1(p1),

S
/pp1
b,B = T3(−sFb,9)Γ4(p1) + T3(smpFb,9)Γ2(p1)

+ T3(smpFb,9)Γ3(p1) + T3(−sm2
pFb,9)Γ1(p1)

+ T3(smpFb,12)Γ4(p1) + T3(−sm2
pFb,12)Γ2(p1)

+ T3(−sm2
pFb,12)Γ3(p1) + T3(sm3

pFb,12)Γ1(p1)

+ T5(−Fb,6)Γ4(p1) + T5(mpFb,6)Γ2(p1)

+ T5(mpFb,6)Γ3(p1) + T5(−m2
pFb,6)Γ1(p1)

+ T5(mpFb,10)Γ4(p1) + T5(−m2
pFb,10)Γ2(p1)

+ T5(−m2
pFb,10)Γ3(p1) + T5(m3

pFb,10)Γ1(p1)

+ T7(−Fb,6)Γ4(p1) + T7(mpFb,6)Γ2(p1)
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+ T7(mpFb,6)Γ3(p1) + T7(−m2
pFb,6)Γ1(p1)

+ T7(mpFb,10)Γ4(p1) + T7(−m2
pFb,10)Γ2(p1)

+ T7(−m2
pFb,10)Γ3(p1) + T7(m3

pFb,10)Γ1(p1)

+ T8(−Fb,9)Γ4(p1) + T8(mpFb,9)Γ2(p1)

+ T8(mpFb,9)Γ3(p1) + T8(−m2
pFb,9)Γ1(p1)

+ T8(mpFb,12)Γ4(p1) + T8(−m2
pFb,12)Γ2(p1)

+ T8(−m2
pFb,12)Γ3(p1) + T8(m3

pFb,12)Γ1(p1)

+ T3mFb,6Γ4(p1) + T3m(−mpFb,6)Γ2(p1)

+ T3m(−mpFb,6)Γ3(p1) + T3m(m2
pFb,6)Γ1(p1)

+ T3m(−mpFb,10)Γ4(p1) + T3m(m2
pFb,10)Γ2(p1)

+ T3m(m2
pFb,10)Γ3(p1) + T3m(−m3

pFb,10)Γ1(p1)

+ T3(2IM )gbΓ2(p1) + T3gb(−2G0(p1))Γ4(p1)
+ T3gb(2mpG0(p1))Γ2(p1) + T3gb(2mpG0(p1))Γ3(p1)

+ T3gb(−2m2
pG0(p1))Γ1(p1) + T3gb(2mpG1(p1))Γ4(p1)

+ T3gb(−2m2
pG1(p1))Γ2(p1) + T3gb(−2m2

pG1(p1))Γ3(p1)

+ T3gb(2m3
pG1(p1))Γ1(p1) + T3(−2IMmp)gbΓ1(p1)

+ T3(sFb,9)mΓ2(p1) + T3(−smpFb,9)mΓ1(p1)

+ T3(−smpFb,12)mΓ2(p1) + T3(sm2
pFb,12)mΓ1(p1)

+ T3(−2sG1(p))gbΓ2(p1) + T3(2smpG1(p))gbΓ1(p1)
+ T5mFb,9Γ4(p1) + T5m(−mpFb,9)Γ2(p1)

+ T5m(−mpFb,9)Γ3(p1) + T5m(m2
pFb,9)Γ1(p1)

+ T5m(−mpFb,12)Γ4(p1) + T5m(m2
pFb,12)Γ2(p1)

+ T5m(m2
pFb,12)Γ3(p1) + T5m(−m3

pFb,12)Γ1(p1)

+ T5Fb,6mΓ2(p1) + T5(−mpFb,6)mΓ1(p1)

+ T5(−mpFb,10)mΓ2(p1) + T5(m2
pFb,10)mΓ1(p1)

+ T5(−2G0(p))gbΓ2(p1) + T5(2mpG0(p))gbΓ1(p1)
+ T7Fb,6mΓ2(p1) + T7(−mpFb,6)mΓ1(p1)

+ T7(−mpFb,10)mΓ2(p1) + T7(m2
pFb,10)mΓ1(p1)

+ T7(−2G0(p))gbΓ2(p1) + T7(2mpG0(p))gbΓ1(p1)
+ T8Fb,9mΓ2(p1) + T8(−mpFb,9)mΓ1(p1)

+ T8(−mpFb,12)mΓ2(p1) + T8(m2
pFb,12)mΓ1(p1)

+ T8(−2G1(p))gbΓ2(p1) + T8(2mpG1(p))gbΓ1(p1)
+ T3m(−Fb,6)mΓ2(p1) + T3m(mpFb,6)mΓ1(p1)

+ T3m(mpFb,10)mΓ2(p1) + T3m(−m2
pFb,10)mΓ1(p1)
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+ T3m(2G0(p))gbΓ2(p1) + T3m(−2mpG0(p))gbΓ1(p1)
+ T3gb(2G0(p1))mΓ2(p1) + T3gb(−2mpG0(p1))mΓ1(p1)

+ T3gb(−2mpG1(p1))mΓ2(p1) + T3gb(2m2
pG1(p1))mΓ1(p1)

+ T5m(−Fb,9)mΓ2(p1) + T5m(mpFb,9)mΓ1(p1)

+ T5m(mpFb,12)mΓ2(p1) + T5m(−m2
pFb,12)mΓ1(p1)

+ T5m(2G1(p))gbΓ2(p1) + T5m(−2mpG1(p))gbΓ1(p1),

S
/q/pp1
b,B = T1(−sFb,9)Γ4(p1) + T1(smpFb,9)Γ2(p1)

+ T1(smpFb,9)Γ3(p1) + T1(−sm2
pFb,9)Γ1(p1)

+ T1(smpFb,12)Γ4(p1) + T1(−sm2
pFb,12)Γ2(p1)

+ T1(−sm2
pFb,12)Γ3(p1) + T1(sm3

pFb,12)Γ1(p1)

+ T2(−Fb,6)Γ4(p1) + T2(mpFb,6)Γ2(p1)

+ T2(mpFb,6)Γ3(p1) + T2(−m2
pFb,6)Γ1(p1)

+ T2(mpFb,10)Γ4(p1) + T2(−m2
pFb,10)Γ2(p1)

+ T2(−m2
pFb,10)Γ3(p1) + T2(m3

pFb,10)Γ1(p1)

+ T4(−Fb,6)Γ4(p1) + T4(mpFb,6)Γ2(p1)

+ T4(mpFb,6)Γ3(p1) + T4(−m2
pFb,6)Γ1(p1)

+ T4(mpFb,10)Γ4(p1) + T4(−m2
pFb,10)Γ2(p1)

+ T4(−m2
pFb,10)Γ3(p1) + T4(m3

pFb,10)Γ1(p1)

+ T6(−Fb,9)Γ4(p1) + T6(mpFb,9)Γ2(p1)

+ T6(mpFb,9)Γ3(p1) + T6(−m2
pFb,9)Γ1(p1)

+ T6(mpFb,12)Γ4(p1) + T6(−m2
pFb,12)Γ2(p1)

+ T6(−m2
pFb,12)Γ3(p1) + T6(m3

pFb,12)Γ1(p1)

+ T1mFb,6Γ4(p1) + T1m(−mpFb,6)Γ2(p1)

+ T1m(−mpFb,6)Γ3(p1) + T1m(m2
pFb,6)Γ1(p1)

+ T1m(−mpFb,10)Γ4(p1) + T1m(m2
pFb,10)Γ2(p1)

+ T1m(m2
pFb,10)Γ3(p1) + T1m(−m3

pFb,10)Γ1(p1)

+ T1(2IM )gbΓ2(p1) + T1gb(−2G0(p1))Γ4(p1)
+ T1gb(2mpG0(p1))Γ2(p1) + T1gb(2mpG0(p1))Γ3(p1)

+ T1gb(−2m2
pG0(p1))Γ1(p1) + T1gb(2mpG1(p1))Γ4(p1)

+ T1gb(−2m2
pG1(p1))Γ2(p1) + T1gb(−2m2

pG1(p1))Γ3(p1)

+ T1gb(2m3
pG1(p1))Γ1(p1) + T1(−2IMmp)gbΓ1(p1)

+ T1(sFb,9)mΓ2(p1) + T1(−smpFb,9)mΓ1(p1)

+ T1(−smpFb,12)mΓ2(p1) + T1(sm2
pFb,12)mΓ1(p1)
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+ T1(−2sG1(p))gbΓ2(p1) + T1(2smpG1(p))gbΓ1(p1)
+ T2mFb,9Γ4(p1) + T2m(−mpFb,9)Γ2(p1)

+ T2m(−mpFb,9)Γ3(p1) + T2m(m2
pFb,9)Γ1(p1)

+ T2m(−mpFb,12)Γ4(p1) + T2m(m2
pFb,12)Γ2(p1)

+ T2m(m2
pFb,12)Γ3(p1) + T2m(−m3

pFb,12)Γ1(p1)

+ T2Fb,6mΓ2(p1) + T2(−mpFb,6)mΓ1(p1)

+ T2(−mpFb,10)mΓ2(p1) + T2(m2
pFb,10)mΓ1(p1)

+ T2(−2G0(p))gbΓ2(p1) + T2(2mpG0(p))gbΓ1(p1)
+ T4Fb,6mΓ2(p1) + T4(−mpFb,6)mΓ1(p1)

+ T4(−mpFb,10)mΓ2(p1) + T4(m2
pFb,10)mΓ1(p1)

+ T4(−2G0(p))gbΓ2(p1) + T4(2mpG0(p))gbΓ1(p1)
+ T6Fb,9mΓ2(p1) + T6(−mpFb,9)mΓ1(p1)

+ T6(−mpFb,12)mΓ2(p1) + T6(m2
pFb,12)mΓ1(p1)

+ T6(−2G1(p))gbΓ2(p1) + T6(2mpG1(p))gbΓ1(p1)
+ T1m(−Fb,6)mΓ2(p1) + T1m(mpFb,6)mΓ1(p1)

+ T1m(mpFb,10)mΓ2(p1) + T1m(−m2
pFb,10)mΓ1(p1)

+ T1m(2G0(p))gbΓ2(p1) + T1m(−2mpG0(p))gbΓ1(p1)
+ T1gb(2G0(p1))mΓ2(p1) + T1gb(−2mpG0(p1))mΓ1(p1)

+ T1gb(−2mpG1(p1))mΓ2(p1) + T1gb(2m2
pG1(p1))mΓ1(p1)

+ T2m(−Fb,9)mΓ2(p1) + T2m(mpFb,9)mΓ1(p1)

+ T2m(mpFb,12)mΓ2(p1) + T2m(−m2
pFb,12)mΓ1(p1)

+ T2m(2G1(p))gbΓ2(p1) + T2m(−2mpG1(p))gbΓ1(p1),

The graph Sµb,WT1 of eq. (4.6) decomposes as

Sµb,WT1 =
(
/pγ

µS
/pγ

b,WT1 + γµSγb,WT1 + pµSpb,WT1 + p1µS
p1
b,WT1

)
γ5

with

S
/pγ

b,WT1 = 2ĝb
((
G0(p1)−mpG1(p1)

)
Y3 − IMY2

)
,

Sγb,WT1 = −mpS
/pγ

b,WT1,

Spb,WT1 = − S/pγb,WT1,

Sp1b,WT1 = − S/pγb,WT1.
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Finally, the decomposition of Sµb,WT2 of eq. (4.7) is given by

Sµb,WT2 =
(
/pγ

µS
/pγ

b,WT2 + γµSγb,WT2 + /qγ
µS

/qγ

b,WT2 + /q/pγ
µS

/q/pγ

b,WT2 + /q/pp
µ
1S

/q/pp1
b,WT2

+ /pp
µ
1S

/pp1
b,WT2 + /qp

µ
1S

/qp1
b,WT2 + pµ1S

p1
b,WT2 + /q/pp

µS
/q/pp

b,WT2 + /pp
µS

/pp

b,WT2

+ /qp
µS

/qp

b,WT2 + pµSpb,WT2

)
γ5

with

S
/pγ

b,WT2 = Z1S
/pγ

b,WT1 + Z3S
γ
b,WT1,

Sγb,WT2 = Z1S
γ
b,WT1 + sZ3S

/pγ

b,WT1,

S
/qγ

b,WT2 = Z2S
γ
b,WT1 + sZ4S

/pγ

b,WT1,

S
/q/pγ

b,WT2 = Z2S
/pγ

b,WT1 + Z4Sγb,WT1,

S
/q/pp1
b,WT2 = Z4S

p1
b,WT1,

S
/pp1
b,WT2 = Z3S

p1
b,WT1,

S
/qp1
b,WT2 = Z2S

p1
b,WT1,

Sp1b,WT2 = Z1S
p1
b,WT1,

S
/q/pp

b,WT2 = Z4S
p
b,WT1,

S
/pp

b,WT2 = Z3S
p
b,WT1,

S
/qp

b,WT2 = Z2S
p
b,WT1,

Spb,WT2 = Z1S
p
b,WT1,

where the abbreviations

Z1 = s(−T3m+ T5 + T7)G1(p) + (−T5m+ sT3 + T8)G0(p)− T5IM ,

Z2 = s(−T1m+ T2 + T4)G1(p) + (−T2m+ sT1 + T6)G0(p)− T2IM ,

Z3 = (−T5m+ sT3 + T8)G1(p) + (−T3m+ T5 + T7)G0(p)− T3IM ,

Z4 = (−T2m+ sT1 + T6)G1(p) + (−T1m+ T2 + T4)G0(p)− T1IM ,

were used. The total amplitude has the same Dirac structures as in the
leading order approach and can be obtained by adding all contributions of
the various amplitudes:

Mµ =γµγ5M1 + qµγ5M2 + pµγ5M3 + pµ1γ5M4 + /qγ
µγ5M5 + /pγ

µγ5M6

+ /q/pγ
µγ5M7 + /qq

µγ5M8 + /pq
µγ5M9 + /qp

µγ5M10 + /pp
µγ5M11

+ /q/pp
µγ5M12 + /qp

µ
1γ5M13 + /pp

µ
1γ5M14 + /q/pp

µ
1γ5M15.

(D.1)

Note, that the amplitudes of the leading order approach, that were decom-
posed in the previous section, have to be included as well.
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Appendix E

Calculation of the differential
cross section

This appendix is dedicated to the calculation of the CGLN amplitudes and
the differential cross section for the photoproduction process pγ → pη de-
scribed in the chapters 3 and 4. The evaluation given here is in analogy
to [39]. The Mandelstam variables are given as usual by

s = (p1 + k)2, u = (p1 − q)2, t = (p2 − p1)2

where k is the momentum of the incoming photon, q is the momentum of the
outgoing η, and p1 and p2 are the momenta of the incoming and outgoing
proton, respectively. A photoproduction amplitude M = εµMµ can be
decomposed as

M = iεµū2

8∑
k=1

BkN µ
k u1,

where u1 and ū2 the spinors and the operator basis is given by

N µ
1 = γ5γ

µ/k, N µ
2 = γ5 p

µ,

N µ
3 = 2γ5 q

µ, N µ
4 = 2γ5 k

µ,

N µ
5 = γ5γ

µ, N µ
6 =

1
2
γ5 /k p

µ,

N µ
7 = γ5 /k k

µ, N µ
8 = γ5 /k q

µ.

The total four-momentum is denoted by p = p1 +k = p2 +q. The coefficients
Bk can be expressed in terms of the coefficients of the Dirac structures of
the photoproduction amplitudeMµ as in eq. (D.1):

B1 = −M5 −M6 +mpM7,

B2 =
1
2
M3 +

1
2
M4 +M5 +M6 −mpM7 −mpM10 −

1
2
mpM11,

117
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+
1
2

(s+m2
p)M12 −mpM13 −

1
2
mpM14 +

1
2

(s+m2
p)M15,

B3 =
1
2
M2 +

1
4
M3 +

1
4
M4 +

1
2
M5 +

1
2
M6 −

1
2
mpM7 −mpM8

− 1
2
mpM9 −

1
2
mpM10 −

1
4
mpM11 +

1
4

(s+m2
p)M12

− 1
2
mpM13 −

1
4
mpM14 +

1
4

(s+m2
p)M15,

B4 =
1
4
M3 −

1
4
M4 +

1
2
M5 +

1
2
M6 −

1
2
mpM7 −

1
2
mpM10

− 1
4
mpM11 +

1
4

(s+m2
p)M12 +

1
2
mpM13 +

1
4
mpM14

− 1
4

(s+m2
p)M15,

B5 = −M1 −mpM6 − (s−m2
p)M7,

B6 = −M10 −M11 +mpM12 −M13 −M14 +mpM15,

B7 = − 1
2
M10 −

1
2
M11 +

1
2
mpM12 +

1
2
M13 +

1
2
M14 −

1
2
mpM15,

B8 = −M8 −M9 −
1
2
M10 −

1
2
M11 +

1
2
mpM12 −

1
2
M13 −

1
2
M14

+
1
2
mpM15,

where mp denotes the mass of the proton. For gauge invariant amplitudes
two constraints on the coefficients Bk can be derived:

k2B1 + kµp
µB2 + 2kµqµB3 + 2k2B4 = 0,

B5 +
1
2
kµp

µB6 + k2B7 + kµq
µB8 = 0.

These constraints can be used to eliminate two coefficients of the Bk, which
are chosen to be B3 and B5. Hence the total amplitude can be rewritten in
a manifestly gauge invariant form:

M = iū2

6∑
k=1

AkMku1

where the operator basis reads

M1 =
1
2
γ5γµγνF

µν , M2 = γ5pµ(qν −
1
2
kν)Fµν

M3 = γ5γµqνF
µν , M4 = γ5γµpνF

µν − 2mpM1,

M5 = γ5kµqνF
µν , M6 = γ5kµγνF

µν ,

with Fµν = εµkν − ενkµ. The coefficients Ak are given by

A1 = B1 −mpB6,
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A2 =
2

M2
η − t

B2,

A3 = −B8,

A4 = − 1
2
B6,

A5 =
2

s+ u− 2m2
p

(
B1 −

s− u
2(M2

η − t)
B2 + 2B4

)
,

A6 = B7,

where Mη is the mass of the η meson.
For an evaluation of the Chew, Goldberger, Low and Nambu (CGLN)

amplitudes, the following decompositions will make use of the conventions
in [39, 40]. The total amplitude can be rewritten once again, using the
standard representation of the Dirac matrices:

1
8π
√
s
iū2

6∑
k=1

AkMku1 = χ†2Fχ1, (E.1)

where the χi are Pauli spinors and the matrix F is given by

F = i(σ · b)F1 + (σ · q̂)(σ · (k̂× b))F2 + i(σ · k̂)(q̂ · b)F3

+ i(σ · q̂)(q̂ · b)F4 − i(σ · q̂)b0F7 − i(σ · k̂)b0F8.

Here, σ is a three-vector containing the Pauli matrices in the standard rep-
resentation as its components, q̂ and k̂ are the three-vector components of q
and k normalized to a unit vector and the four-vector b = (b0,b) is defined
by

bµ = εµ −
ε · k̂
|k|

kµ,

where ε is the three-vector part of the four-vector ε. The CGLN-amplitudes
Fi can be evaluated in terms of the Ai by substituting the standard repre-
sentation of Dirac spinors and matrices on the l.h.s. of eq. E.1:

F1 = (
√
s−mp)

√
E1 +mp

√
E2 +mp

8π
√
s

[
A1 +

kµq
µ

√
s−mp

A3

+
(√

s−mp −
kµq

µ

√
s−mp

)
A4 −

k2

√
s−mp

A6

]
,

F2 = (
√
s+mp)

√
E1 +mp

√
E2 +mp

8π
√
s

|q||k|
(E1 +mp)(E2 +mp)

[
−A1

+
kµq

µ

√
s+mp

A3 +
(√

s+mp −
kµq

µ

√
s+mp

)
A4 −

k2

√
s+mp

A6

]
,

F3 = (
√
s+mp)

√
E1 +mp

√
E2 +mp

8π
√
s

|q||k|
E1 +mp

[
m2
p − s+ 1

2k
2

√
s+mp

A2 +A3
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−A4 −
k2

√
s+mp

A5

]
,

F4 = (
√
s−mp)

√
E1 +mp

√
E2 +mp

8π
√
s

|q|2

E2 +mp

[
s−m2

p − 1
2k

2

√
s−mp

A2 +A3

−A4 +
k2

√
s−mp

A5

]
,

F7 =

√
E1 +mp

√
E2 +mp

8π
√
s

|q|
E2 +mp

[
(mp − E1)A1

−
(
|k|2

2k0

(
2k0

√
s− 3kµqµ

)
− q · k

2k0

(
2s− 2m2

p − k2
))
A2

+
(
q0(
√
s−mp)− kµqµ

)
A3

+
(
kµq

µ − q0(
√
s−mp) + (E1 −mp)(

√
s+mp)

)
A4

+ (q0k
2 − k0kµq

µ)A5 − (E1 −mp)(
√
s+mp)A6

]
,

F8 =

√
E1 +mp

√
E2 +mp

8π
√
s

|k|
E1 +mp

[
(E1 +m1)A1

+
(
|k|2

2k0

(
2k0

√
s− 3kµqµ

)
− q · k

2k0

(
2s− 2m2

p − k2
))
A2

+
(
q0(
√
s+mp)− kµqµ

)
A3

+
(
kµq

µ − q0(
√
s+mp) + (E1 +mp)(

√
s−mp)

)
A4

− (q0k
2 − k0kµq

µ)A5 − (E1 +mp)(
√
s−mp)A6

]
,

where Ei =
√

p2
i +m2

p with i = 1, 2. Now, the CGLN-amplitudes can be
used to calculate the multipoles, when restricted to s- and p-waves:

E0+

M1+

M1−
E1+

 =
∫ 1

−1
dz


1
2P0 −1

2P1 0 1
6P0,2

1
4P1 −1

4P2 − 1
12P0,2 0

−1
2P1

1
2P0

1
6P0,2 0

1
4P1 −1

4P2
1
12P0,2

1
10P1,3



F1

F2

F3

F4


and likewise L0+

L1+

L1−

 =
k0

|k|

∫ 1

−1
dz

1
2P1

1
2P0

1
4P2

1
4P1

1
2P0

1
2P1

(F7

F8

)
,

where Pl = Pl(z) are the Legendre polynomials, z = cos(θ) is the scattering
angle and

P0,2 = P0 − P2, P1,3 = P1 − P3.
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The unpolarized differential cross sections for the η-photoproduction am-
plitude off protons can be given in terms of CGLN-amplitudes in agreement
with [39]:

dσ

dΩ
=
|q|
|k|

[
|F1|2 + |F2|2 +

1
2
|F3|2 +

1
2
|F4|2 + Re(F1F∗4 ) + Re(F2F∗3 )

+
(
Re(F2F∗4 )− 2Re(F1F∗2 )

)
z

−
(1

2
|F3|2 +

1
2
|F4|2 + Re(F1F∗4 + F2F∗3 )

)
z2 − Re(F3F∗4 )z3

]
.
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Appendix F

Differential cross section plots

This appendix provides the complete sets of plots from the fit to the differ-
ential cross section data in the leading order approach of chapter 3, as well
as from the extension of the amplitude of chapter 4.

F.1 Leading order approach

This section contains the full set of differential cross section plots from the
leading order approach of chapter 3. Fig. F.1 shows all data points from
McNicoll et al. [29] to which the model was fitted and the resulting best fit
for the parameters quantified in eq. (3.12). Masses and decay constants are
given by eq. (2.15) and eq. (2.3), respectively. The overall χ2/d.o.f. for this
fit is given by eq. (3.13).
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Figure F.1: Differential cross section of the model evaluated in chapter 3 (black line) fitted
to the data points taken from McNicoll et al. [29] (red symbols) from threshold up to the
center-of-mass energy Ecm =

√
s = 1609.0MeV. The shaded area represents the error

estimate.

F.2 Extended amplitude

This section provides the complete set of differential cross section data of the
evaluation of the extended amplitude of chapter 4. Again, the data points
are taken from McNicoll et al. [29]. Fig. F.2 shows the best fit of the of the
model including NLO potentials, whereas fig. F.3 shows the best fit without
NLO potentials. The corresponding parameter sets are given by eq. (4.8)
for the amplitude with NLO potentials and by eq. (4.9) for the amplitude
without NLO potentials. The overall χ2/d.o.f are given by eq. (4.10).
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Figure F.2: Differential cross section of the model with NLO potentials evaluated in
chapter 4 (blue line) fitted to the data points taken from McNicoll et al. [29] (red symbols)
from threshold up to the center-of-mass energy Ecm =

√
s = 1541.8MeV. The blue shaded

area represents the error estimate.
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Figure F.3: Differential cross section of the model without NLO potentials evaluated in
chapter 4 (black dashed line) fitted to the data points taken from McNicoll et al. [29] (red
symbols) from threshold up to the center-of-mass energy Ecm =

√
s = 1541.8MeV. The

shaded area represents the error estimate.
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